【正文】
lgorithm 2 clear ep(100)=0 for n=100:1:2 ep(n1)=(exp()ep(n))/n。)。 z=1y 復雜度 ? 回憶 : 2階問題 , 3階問題 ? 考慮一般矩陣的行列式 ? 計算需要的乘法次數 ? ? ? ?? ???????nniiiiii aaaA, 21211 de t??? ? !1 nn ?復雜度 ? 指數型算法 ? 算法計算量是問題規(guī)模的指數函數 ? 只能夠處理規(guī)模很小的問題 ? 多項式型算法 ? 算法計算量是問題規(guī)模的多項式函數 ? 可以處理規(guī)模較大的問題 Complexity Descriptor Data Set Size in Bytes Storage Mode Tiny 102 Piece of Paper Small 104 A Few Pieces of Paper Medium 106 A Floppy Disk Large 108 Hard Disk Huge 1010 Multiple Hard Disks Massive 1012 Robotic Magic Tape Storage Silos Supermassive 1015 Distributed Data Archives The HuberWegman Taxonomy of Data Set Sizes Complexity O( n ) Calculate Means, Variances, O(n log(n)) Calculate Fast Fourier Transforms O( n 2 ) Solve most Clustering Algorithms O( n 3 ) Solve systme of linear equaton O( a n ) TSP Algorithmic Complexity Complexity N umbe r of Ope rati ons f or Algor it hms of Vari ous C omputati onal C omple x it ies and Various Data Set Sizes n n1 / 2 n n log(n ) n3 / 2 n2 ti n y 10 102 2x102 103 104 sm all 102 104 4x104 106 108 m e diu m 103 106 6x106 109 1012 large 104 108 8x1 08 1012 1016 h u ge 105 1010 1011 1015 1020 Complexity Com p u tat ion al F e asib il ity on a P e n tium P C 10 m e gaf lop p e r f or m an c e assu m e d n n1 / 2 n n log(n ) n3 / 2 n2 ti n y 10 6 se c on ds 10 5 se c on ds 2x10 5 se c on ds .0001 se c on ds .001 se c on ds sm all