【摘要】各地圓錐曲線試題匯編各地圓錐曲線試題匯編橢圓1.若橢圓長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)之比為2,它的一個(gè)焦點(diǎn)是,求此橢圓的標(biāo)準(zhǔn)方程;
2025-08-04 14:57
【摘要】1.設(shè)P是橢圓+=1上的點(diǎn),若F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則|PF1|+|PF2|等于( )A.4 B.5C.8 D.10答案:D2.橢圓+=1的焦點(diǎn)坐標(biāo)是( )A.(±4,0) B.(0,±4)C.(±3,0) D.(0,±3)答案:D3.已知橢圓的兩個(gè)焦點(diǎn)為F1(-1,0),F(xiàn)2(
2025-07-23 20:57
【摘要】二圓錐曲線的參數(shù)方程更上一層樓基礎(chǔ)·鞏固1直線=1與橢圓=1相交于A、B兩點(diǎn),該橢圓上點(diǎn)P使得△PAB的面積等于3,這樣的點(diǎn)P共有()思路解析:設(shè)P1(4cosα,3sinα),α∈(0,),則=×4sinα+×3×4cosα=6(si
2025-08-05 03:29
【摘要】雙曲線及其標(biāo)準(zhǔn)方程 一、教學(xué)目標(biāo)(一)知識(shí)教學(xué)點(diǎn)使學(xué)生掌握雙曲線的定義和標(biāo)準(zhǔn)方程,以及標(biāo)準(zhǔn)方程的推導(dǎo).(二)能力訓(xùn)練點(diǎn)在與橢圓的類(lèi)比中獲得雙曲線的知識(shí),從而培養(yǎng)學(xué)生分析、歸納、推理等能力.(三)學(xué)科滲透點(diǎn)本次課注意發(fā)揮類(lèi)比和設(shè)想的作用,與橢圓進(jìn)行類(lèi)比、設(shè)想,使學(xué)生得到關(guān)于雙曲線的定義、標(biāo)準(zhǔn)方程一個(gè)比較深刻的認(rèn)識(shí).二、教材分析1.重點(diǎn):雙曲線的定義和雙曲線
2025-08-04 07:08
【摘要】WORD資料可編輯一橢圓知識(shí)要點(diǎn)1.橢圓定義:平面內(nèi)與兩個(gè)定點(diǎn)的距離之和為常數(shù)的動(dòng)點(diǎn)的軌跡叫橢圓,其中兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn).當(dāng)時(shí),的軌跡為橢圓;;當(dāng)時(shí),的軌跡不存在;當(dāng)時(shí),的軌跡為以為端點(diǎn)的線段:標(biāo)準(zhǔn)方程
2025-06-24 04:00
【摘要】圓錐曲線與射影幾何射影幾何是幾何學(xué)的重要內(nèi)容,射影幾何中的一些重要定理和結(jié)論往往能運(yùn)用在歐式幾何中,有利于我們的解題。在這里,我們將對(duì)解析幾何中一些常見(jiàn)的圓錐曲線問(wèn)題進(jìn)行總結(jié),并給中一些較為方便的解法。例1:設(shè)點(diǎn),D在雙曲線的左支上,,直線交雙曲線的右支于點(diǎn)。求證:直線與直線的交點(diǎn)在直線上。如果是用解析幾何的做法,這將是非常
2025-06-22 15:55
【摘要】......有關(guān)解析幾何的經(jīng)典結(jié)論一、橢圓1.點(diǎn)處的切線平分在點(diǎn)處的外角.(橢圓的光學(xué)性質(zhì))2.平分在點(diǎn)處的外角,則焦點(diǎn)在直線上的射影點(diǎn)的軌跡是以長(zhǎng)軸為直徑的圓,除去長(zhǎng)軸的兩個(gè)端點(diǎn).(中位線)3.
2025-06-22 16:01
【摘要】圓錐曲線的幾何性質(zhì)xyoF11F2AB一、橢圓的幾何性質(zhì)(以+=1(a﹥b﹥0)為例) 1、⊿ABF2的周長(zhǎng)為4a(定值)證明:由橢圓的定義即 2、焦點(diǎn)⊿PF1F2中:xyoF1F22P(1)S⊿PF1F2=(2)(S⊿PF1F2)max=bc(3)當(dāng)P在短軸上時(shí),∠F1PF2最大證明:
2025-08-05 04:45
【摘要】圓錐曲線復(fù)習(xí)(二)數(shù)學(xué)高二年級(jí)例1已知雙曲線的中心在原點(diǎn),且一個(gè)焦點(diǎn)為F,直線與其相交于M、N兩點(diǎn),MN中點(diǎn)的橫坐標(biāo)為,則此雙曲線的方程是______.解:解得所求雙曲線方程例2橢圓
2024-11-06 23:19
【摘要】圓錐曲線復(fù)習(xí)(一)數(shù)學(xué)高二年級(jí)例1已知圓C:(x-a)2+(y-2)2=4及直線l:x-y+3=0,當(dāng)直線l被圓C截得的弦長(zhǎng)為時(shí),則a=________.解出解:由平面幾何知:圓心到直線的距離為1,由點(diǎn)到直線的距離公式得CBAD例2已知拋物線
2024-11-06 19:11
【摘要】簡(jiǎn)化解析幾何的若干途徑AFMCDNBOABCO練習(xí):作業(yè):全優(yōu)期末練習(xí)
【摘要】圓錐曲線中的定點(diǎn)問(wèn)題明對(duì)任意情況都成立找到定點(diǎn),再證方法三:通過(guò)特殊位置的值求出方法二:通過(guò)計(jì)算可以)則直線過(guò)(例如的關(guān)系與方法一:找到設(shè)直線為基本思想:.,022,bkbbkbkxy????【例1-1】已知拋物線C:y2=2px(p0)的焦點(diǎn)F(1,0),O為坐
【摘要】......高考數(shù)學(xué)圓錐曲線部分知識(shí)點(diǎn)梳理1、方程的曲線:在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點(diǎn)的集合或軌跡)上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這
2025-04-04 05:07
【摘要】習(xí)題精選精講圓錐曲線:(1)第一定義中要重視“括號(hào)”內(nèi)的限制條件:橢圓中,與兩個(gè)定點(diǎn)F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當(dāng)常數(shù)等于時(shí),軌跡是線段FF,當(dāng)常數(shù)小于時(shí),無(wú)軌跡;雙曲線中,與兩定點(diǎn)F,F(xiàn)的距離的差的絕對(duì)值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對(duì)值”與<|FF|不可忽視。若=|FF|,則軌跡是以F,F(xiàn)為端點(diǎn)的兩條射線,若﹥|FF|,則軌跡不存在。若去
【摘要】圓錐曲線知識(shí)點(diǎn)小結(jié):橢圓:平面內(nèi)與兩個(gè)定點(diǎn)的距離之和等于定長(zhǎng)(大于)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做橢圓的焦距。數(shù)學(xué)語(yǔ)言:常數(shù)2a=,軌跡是線段;常數(shù)2a,軌跡不存在;雙曲線:平面內(nèi)與兩個(gè)F1,F(xiàn)2的距離之差的絕對(duì)值等于常數(shù)(小于||F1F2)的點(diǎn)的軌跡叫做雙曲線。這兩個(gè)定點(diǎn)叫做雙曲線的焦點(diǎn),兩焦點(diǎn)的距離叫做雙曲線的焦距。數(shù)學(xué)語(yǔ)言
2025-08-10 15:54