【摘要】勾股定理的逆定理第十七章勾股定理導(dǎo)入新課講授新課當堂練習(xí)課堂小結(jié)八年級數(shù)學(xué)下(RJ)教學(xué)課件第2課時勾股定理的逆定理的應(yīng)用學(xué)習(xí)目標.(重點)題.(難點)導(dǎo)入新課問題前面的學(xué)習(xí)讓我們對勾股定理及其逆定理的
2025-06-17 01:48
【摘要】學(xué)練考數(shù)學(xué)八年級下冊R感謝您使用本課件,歡迎您提出寶貴意見!
2025-06-12 12:10
【摘要】勾股定理的應(yīng)用舉例練習(xí)題1、如圖所示,已知在三角形紙片ABC中,BC=3,AB=6,∠BCA=90°.在AC上取一點E,以BE為折痕,使AB的一部分與BC重合,A與BC延長線上的點D重合,則DE的長度為( )A.6?????B.3
2025-03-24 13:00
【摘要】第14章勾股定理勾股定理直角三角形三邊的關(guān)系第2課時勾股定理的驗證及其簡單應(yīng)用拼圖法大多數(shù)是利用驗證勾股定理.利用定理,知道直角三角形任意兩條邊的長,可求出的長,并能利用它解決相關(guān)的簡單的實際問題.例如一根長為5米的木桿斜靠在墻上(如圖),桿底距墻的下沿的距離B
2025-06-16 21:12
【摘要】勾股定理的逆定理第十七章勾股定理第1課時一、情境引入?據(jù)說,幾千年前的古埃及人就已經(jīng)知道,在一根繩子上連續(xù)打上等距離的13個結(jié),然后,用釘子將第1個與第13個結(jié)釘在一起,拉緊繩子,再在第4個和第8個結(jié)處各釘上一個釘子,如圖。這樣圍成的三角形中,最長邊所對的角就是直角。知道為什么嗎?也就意味著,如果圍成三
2024-12-07 17:29
【摘要】勾股定理應(yīng)用知識回憶:?cab勾股定理及其數(shù)學(xué)語言表達式:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。222cba??CABcab222cba??在△ABC中,∠C=90°.(1)若b=8,c=10,則a=
2024-12-08 14:07
【摘要】逆定理(一)勾股定理如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2學(xué)習(xí)目標1、探究并證明勾股定的逆定理,并能運用勾股定理的逆定理判斷一個三角形是否是直角三角形;2、了解原命題、逆命題、原定理、逆定理、勾股數(shù)的概念,并了解原命題是真命題,它的逆命題不一定是真命題。
2024-11-21 05:35
【摘要】勾股定理的應(yīng)用㈢制作:趙齊猛審核:祁海軍◆如圖,公路MN和小路PQ在點P處交匯,且∠QPN=30°,點A處有一所學(xué)校,AP=160m,假設(shè)拖拉機行駛時,周圍100m內(nèi)受噪音影響,那么拖拉機在公路MN上以18km/h的速度沿PN方向行駛時,學(xué)校是否受到噪音的影響?如果學(xué)校受到影響,那
2024-10-18 19:46
【摘要】14.2勾股定理的應(yīng)用第14章勾股定理第2課時勾股定理及其逆定理的綜合運用2.如圖,在4×5網(wǎng)格中,每個小正方形的頂點都叫做格點,點A是其中的一個格點,若B,C也是網(wǎng)格中的格點,且△ABC是以BC為底邊,腰長為的等腰直角三角形,那么符合條件的△ABC一共有()A.6個B.
2024-11-09 13:34
2025-06-16 20:57
【摘要】第1章直角三角形直角三角形的性質(zhì)和判定(Ⅱ)第2課時學(xué)習(xí)目標1.會運用勾股定理求線段長及解決簡單的實際問題.(重點),利用勾股定理建立已知邊與未知邊長度之間的聯(lián)系,并進一步求出未知邊長.(難點)問題觀看下面同一根長竹竿以三種不同的方式進門的情況,對于長竹竿進門之類的問題你有什么啟
2024-12-28 01:33
【摘要】如圖所示,為了測得湖兩岸點A和點C間的距離,一個觀測者在點B設(shè)立了一根標桿,使∠ACB=90°.測得AB=200m,BC=160m.根據(jù)測量結(jié)果,求點A,C間的距離.ACB根據(jù)勾股定理,可得AC2=AB2-BC2=2021-1602=14400.所以AC=120(m)登山隊員在山頂一平
2024-12-08 15:17
【摘要】勾股定理的應(yīng)用㈡制作:趙齊猛審核:祁海軍◆如圖,在的正方形網(wǎng)格中,每個小正方形的邊長都為.⑴從點A出發(fā)的一條線段AB,使它的另一個端點落在格點(即小正方形的頂點)上,且長度為;22A.◆如圖,在的正方形網(wǎng)格中,每個小正方形的邊長都為.A.⑵以⑴中的AB為邊的一個等腰三
2024-10-19 07:51
【摘要】勾股定理復(fù)習(xí)(二)回顧本章內(nèi)容:直角三角形三邊關(guān)系勾股定理cba直角三角形a2+b2=c2直角三角形的判別cbaa2+b2=c2直角三角形(形)(數(shù))(形)(數(shù))Rt?ABC中,AB=c,BC=a,AC=b,?B=90?.(1)
2024-10-12 10:56
【摘要】勾股定理(1)回憶:我們學(xué)過直角三角形的哪些性質(zhì)?看一看相傳二五OO年前,有一次畢達哥拉斯去朋友家作客,發(fā)現(xiàn)朋友家用磚鋪成的地面反映直角三角形三邊的某種數(shù)量關(guān)系,同學(xué)們,我們也來觀察下面的圖案,看看你能發(fā)現(xiàn)什么?數(shù)學(xué)家畢達哥拉斯的發(fā)現(xiàn):A
2025-07-18 13:05