【摘要】等差數(shù)列的定義:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差(用字母d來表示)或者是:對(duì)于數(shù)列{an},若an+1-an=d(常數(shù))(n∈N*),則這個(gè)數(shù)列就叫做等差數(shù)列,常數(shù)d叫公差。a2-a1=a3-a2=…=a
2025-05-15 01:34
【摘要】等差數(shù)列的概念教案【教學(xué)目標(biāo)】知識(shí)與技能:1、理解等差數(shù)列的定義,能根據(jù)定義判斷一個(gè)數(shù)列是否為等差數(shù)列;2、了解公差的概念,會(huì)求一個(gè)給定等差數(shù)列的首項(xiàng)與公差;3、理解等差中項(xiàng)的概念,會(huì)利用等差中項(xiàng)解決相應(yīng)的簡(jiǎn)單的等差數(shù)列問題。過程與方法:1、通過對(duì)情景問題的分析理解和歸納概括,了解等差數(shù)列的簡(jiǎn)單產(chǎn)生過程;2、通過解決基本等差數(shù)列問題的過程,加深對(duì)等差數(shù)列概念、公差
2025-04-17 08:12
【摘要】等差數(shù)列2020-11-3知識(shí)歸納:容?定義.等差數(shù)列通項(xiàng).前n項(xiàng)和.主要性質(zhì).2.等差數(shù)列的定義、用途及使用時(shí)需注意的問題?
2024-11-09 00:25
【摘要】等差數(shù)列的前n項(xiàng)和一.新課引入一個(gè)堆放鉛筆的V形架的最下面一層放一支鉛筆,往上每一層都比它下面一層多放一支,最上面一層放100支。這個(gè)V形架上共放著多少支鉛筆?問題就是“”?1004321???????這是小學(xué)時(shí)就知道的一個(gè)故事,高斯的算法非常高明,回憶他是怎樣算的?
2024-11-17 19:18
【摘要】等差數(shù)列求和公式教學(xué)目標(biāo)1.知識(shí)目標(biāo)(1)掌握等差數(shù)列前n項(xiàng)和公式,理解公式的推導(dǎo)方法;(2)能較熟練應(yīng)用等差數(shù)列前n項(xiàng)和公式求和。2.能力目標(biāo)經(jīng)歷公式的推導(dǎo)過程,體會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想,體驗(yàn)從特殊到一般的研究方法,學(xué)會(huì)觀察、歸納、反思和邏輯推理的能力。3.情感目標(biāo)通過生動(dòng)具體的現(xiàn)實(shí)問題,激發(fā)學(xué)生探究的興趣和欲望,樹立學(xué)生求真的勇氣和自信心,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的心
2025-04-17 07:44
【摘要】第一篇:等差數(shù)列復(fù)習(xí)課教案 等差數(shù)列復(fù)習(xí)課 (一)三維目標(biāo) 1.知識(shí)與技能:復(fù)習(xí)等差數(shù)列的定義、通項(xiàng)公式、.過程與方法:師生共同回憶復(fù)習(xí),.情感與價(jià)值:培養(yǎng)學(xué)生觀察、歸納的能力,培養(yǎng)學(xué)生的應(yīng)用意...
2024-10-25 11:40
【摘要】數(shù)列和等差數(shù)列練習(xí)題一、填空題1,1、數(shù)列1,2、等差數(shù)列-3,-6,-9,-12,…的通項(xiàng)公式是——3、已知數(shù)列4,7,10,…,3n-2,…則4891是這個(gè)數(shù)列的第------4、a1a2a3a4成等差數(shù)列,a1+a4=25,則s4=-----------5、在等差數(shù)列{an}中,s7=63,則a4=---------- 6,在等差數(shù)列
2025-01-14 02:19
【摘要】主導(dǎo):王xxxxxx主演:0622班學(xué)生3、1數(shù)列的概念1、數(shù)列的定義:按一定順序排列的一列數(shù)叫數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。根據(jù)數(shù)列的定義知:數(shù)列是按一定順序排列的一列數(shù).因此,若兩個(gè)數(shù)列中被排列的數(shù)相同,但次序不同,則
2024-11-10 01:48
【摘要】等差數(shù)列與等比數(shù)列的應(yīng)用復(fù)習(xí)提問1、口答:(1)等差數(shù)列的通項(xiàng)公式______?na前n項(xiàng)和公式_____?nS或_____?nS(2)等比數(shù)列的通項(xiàng)公式______?na前n項(xiàng)和公式:當(dāng)1?q時(shí),_____?nS或_____?nS數(shù)列等差
2025-05-12 17:18
【摘要】等差數(shù)列(二)知識(shí)回顧等差數(shù)列?????????—幾何意義—通項(xiàng)公式—遞推公式(定義式)—定義AAAAAAAAAAAAA每一項(xiàng)與它前一項(xiàng)的差如果一個(gè)數(shù)列從第2項(xiàng)起,等于同一個(gè)常數(shù).......②等差數(shù)列的通項(xiàng)公式是關(guān)于n的一次函數(shù)形
2024-11-24 17:31
【摘要】等差數(shù)列的前n項(xiàng)和一、數(shù)列前n項(xiàng)和的意義數(shù)列{an}:a1,a2,a3,…,an,…我們把a(bǔ)1+a2+a3+…+an叫做數(shù)列{an}的前n項(xiàng)和,記作Sn.二、問題A?如圖,建筑工地上一堆圓木,從上到下每層的數(shù)目分別為1,2,3,……,10.問共有多少根
2024-10-16 20:23
【摘要】等差數(shù)列的證明和最值?等差數(shù)列證明?等差數(shù)列最值?規(guī)律總結(jié)?結(jié)束?考查等差數(shù)列的定義,多以證明題的形式出現(xiàn),要證明一個(gè)數(shù)列是等差數(shù)列的基本方法是證明an+1-an=d(n∈N*,d為常數(shù))或2an+1=an+an+2成立.對(duì)于實(shí)際問題,要結(jié)合題目的具體特點(diǎn),靈活選取解答方法.
2024-08-14 15:39
【摘要】一、教學(xué)目標(biāo):1、利用等差數(shù)列的定義,證明一個(gè)數(shù)列是否為等差數(shù)列2、利用等差數(shù)列的通項(xiàng)公式,會(huì)求一個(gè)數(shù)列的通項(xiàng)二、教學(xué)難點(diǎn)利用定義證明一個(gè)數(shù)列是等差數(shù)列三、學(xué)情分析:數(shù)列是特殊的函數(shù),學(xué)生剛開始學(xué)習(xí)數(shù)列有點(diǎn)不習(xí)慣,故教學(xué)過程稍微慢一點(diǎn),利用定義證明的步驟在教學(xué)過程再細(xì)一點(diǎn)。
2024-11-09 12:24
【摘要】等差數(shù)列的前n項(xiàng)和高一數(shù)學(xué)必修五第二章《數(shù)列》復(fù)習(xí)鞏固1.an=am+(n-m)d,在等差數(shù)列{an}中,mnpqaaaa????m+n=p+qa1+an=a2+an-1=a3+an-2=….例題講解例1在等差數(shù)列{an}中
2024-08-10 13:48
【摘要】等差數(shù)列的性質(zhì):(1)等差中項(xiàng):2an=an+1+an-1(2A=a+b)(2)在等差數(shù)列{an}中a1+ana2+an-1——a3+an-2…am+an-m===②上面的命題中的等式兩邊有相同數(shù)目的項(xiàng),如a1+a2=a3成立嗎?{an}中,由
2024-08-25 02:29