【正文】
ilar utility, since has original volume has gone out of print. Today it requires ten people to do what he was able to do by himself. In part this is testimony to the development that has occurred in all of these areas, and each chapter of the original work is now a separate discipline. We are fortunate to have excellent contributors for each of the topics discussed here, but we wish to salute Dr. Runyan for his original and enduring contribution to the field. 在過去,曾有德洲儀器公司的 Walt Runyan 出版過一本有關(guān)半導(dǎo)體硅技術(shù)方面的書,根據(jù)他的啟示和靈感( Following his lead and inspiration),我們承擔(dān)了出版工作,使得他先前的文稿得以出版。例如,在 1989年,全球生產(chǎn)約 6000噸用于生產(chǎn)單晶的多晶硅,而僅在美國、日本和歐洲就以此生產(chǎn)了 3000 噸單晶硅。 Early work in silicon science and technology was excellent, as evidenced by the fact the original crystal growth process is still used in manufacturing today. That process was developed at Bell Laboratories by Teal and Buehler, following the original crystal growth process developed for germanium by Teal and Little. This initial work was done in spite of 9 device engineers who were convinced that polycrystalline material would be adequate for transistor manufacturing. 硅材料科學(xué)技術(shù)的早期工作是非常出色的,很明顯的事實是:原始單晶的生長工藝( original crystal growth process)一直沿用到今天。 and 3 for hexafluorosilicicsilane (硅烷的建筑-由氯硅烷到硅烷為 5 級,由氟硅酸到硅烷為 3 級 ) Silane reactor choices—grade 5 going to 7 (硅烷反應(yīng)爐的選擇- 5~ 7 級) Silane electrical energy usage—grade 5/10 (硅烷的電能使用- 5/10 級 ) Dichlorosilane as a polysilicon feedstock (以 SiH2Cl2作為多晶硅的原料) Dichlorosilane purity—grade 7 ( SiH2Cl2的純度-為 7 級) Dichlorosilane manufacturing cost—grade 6 ( SiH2Cl2的制造成本-為 6 級) Dichlorosilane safety—grade 3 ( SiH2Cl2的安全性-為 3 級) Dichlorosilane alternative sources—grade 0 15 ( SiH2Cl2可選擇來源-為 0 級) Dichlorosilane transportability—grade 2 ( SiH2Cl2的運(yùn)輸-為 2 級) Dichlorosilane storage—grade 3 (SiH2Cl2儲存-為 3 級 ) Dichlorosilane byproducts recovery—grade 3 ( SiH2Cl2 副產(chǎn)品回收-為 3 級) Dichlorosilane byproducts use—grade 3 ( SiH2Cl2副產(chǎn)品的利用-為 3 級) Dichlorosilane deposition rate—grade 5 ( SiH2Cl2的沉積速率-為 5 級) Dichlorosilane construction methods—grade 5 ( SiH2Cl2的建筑方式-為 5 級) Dichlorosilane reactor choices—grade 3 ( SiH2Cl2的反應(yīng)爐選擇-為 3 級) Dichlorosilane electrical energy usage—grade 5 ( SiH2Cl2的電能利用-為 5 級) Trichlorosilane as a polysilicon feedstock (以 SiHCl3作為多晶硅原料) Trichlorosilane purity—grade 7 for Belljar polysilicon。早期的工作使得設(shè)計工程師們( device engineers)感到困惑,因為他們確信多晶材料就能適合于制作晶體管。 1 多晶硅工藝中英文對照表 硅烷 (SiH4): Silane 二氧化硅 (SiO2) : Silica 一氯三氫硅 (SiH3Cl): Monochlorosilane 二氯二氫硅 (SiH2Cl2): Dichlorosilane(DCS) 三氯氫硅 (SiHCl3): Trichlorosilane(TCS) 四氯化硅 (SiCl4): Silicon Tetrachloride(STC) 冶金級硅: MetallurgicalGrade Silicon(MGSi) 多晶硅: Polycrystalline Silicon(Polysilicon) 單晶硅: Single Crystal(Crystal) 硅樹脂: Silicone 硅油: Silicon Oil 載氣: Carrier Gas 粉末二氧化硅 : Fumed Silica 光纖: Fiber optil 外延層: Epitaxial Layer 非晶 (無定形 )層: Amorphous Layer 多晶層: Polysilicon Layer 化學(xué)汽相沉積工藝: Chemicalvapordeposition processes 棒狀、塊狀多晶硅: Rod、 Chunk Polysilicon 少數(shù)載流子壽命: Minority Carrir lifetime 2 晶格: Crystallographic Lattice 施主雜質(zhì): Dopant impurity 受主雜質(zhì): Accept impurity 氧: Oxygen 碳: Carbon 重金屬: Heavy metals 蒸汽壓: Vapor Pressure 密度: Density 熱容: Heat Capacity 自由能: Free Energy 標(biāo)準(zhǔn)焓: Standart Enthalpy 標(biāo)準(zhǔn)熵: Standart Entropy 表面張力: Surface Tension 粘度: Viscosity 熱導(dǎo)率: Thermal Conductivity 轉(zhuǎn)換效率: Conversion Efficiency 沉積速率: Deposition Rate 催化劑: Catalytic agent 偶聯(lián)劑: Coupling agent 表壓(磅 /平方英吋) Psig:( pounds per square inch gauge) 蒸發(fā): Evaporate 溶解: Dissolve 3 濃縮、凝縮: Condensation 濃度、濃縮: Concentration 吸收: Absorb 吸附: Adsoption 蒸餾: Dislillation 置換: Replacement 捕獲、收集: Capture 分解: Depose 分裂: Dissociation 污染: Contaminate 腐蝕性: Corrosive 汽態(tài)吸收: Gaseous Absorption 全閉路循環(huán): Fully Closedloop 水解反應(yīng): Hydrolysis Reaction 氫氣中 TCS 的分子比率: Mole ration of TCS in H2 著火: Ignition 發(fā)煙: Smoke 起火: Fire 燃燒: Burn 爆炸: Explosion 活性碳柱: Activated Carbon Column 薄霧淋洗塔: Falling film tower 4 流化床反應(yīng)爐 (FBR): Fluidied Bed Reactor 石英鐘罩反應(yīng)爐: Quartz bell jar reactor 金屬鐘罩反應(yīng)爐: Metal bell jar reactor 5 氯硅烷主要反應(yīng)式: SiO2+2C→ Si+2CO (由石英石制備工業(yè)硅 ) Si+3HCl→ SiHCl3+H2 (沸騰氯化制 取三氯氫硅 ) 3SiCl4+2H2+Si+Cu 催化劑 → 4SiHCl3(~800℃ 3Mpa 約 37%的轉(zhuǎn)化率 ) (四氯化硅氫化生成三氯氫硅 ) SiHCl3+H2→ Si+3HCl(~1375K) (三氯氫硅氫還原制備多晶硅 ) SiHCl3+HCl→ SiCl4+H2 3 SiHCl3→ Si+2 SiCl4+HCl+ H2 2 SiHCl3→ SiH2Cl2+ SiCl4 2 SiH2Cl2→ SiH3Cl+ SiHCl3 硅烷( SiH4 )的四種制備方法 由四氯化硅與氫化鋰反應(yīng) 4LiH+ SiCl4→ SiH4+4LiCl 由硅鎂合金與氯化氨反應(yīng) Mg2Si+4NH4Cl→ SiH4+2MgCl+4NH3 由一氯三氫硅分解 2 SiH3Cl→ SiH4+ SiH2Cl2 Ethyl 公司早期開發(fā)的硅烷制備工藝: 它是用過磷酸鈣肥料工業(yè)的副產(chǎn)品( a byproduct from the superphosphate fertilizer industry)氟硅酸( H2SiF6)作原料,主要的反應(yīng)式為: 6 H2SiF6 +H2SO4→ SiF4+2HF SiF4+LiH→ SiH4+4LiF(在二苯 基乙醚里, 525K) LiH是用金屬鋰在礦物油里與氫反應(yīng)而制得,收率可達(dá) 90% 7 Handbook of Semiconductor Silicon Technology 序 Semiconductor silicon has bee the most important and characteristic material of our agethe silicon age. It has achieved this distinction with a rather modest volume of production as pared to that of other basic industrial materials. For example, in 1989, about 6000 metric tons of polysilicon were produced worldwide for silicon crystal growth, resulting in 3000 tons of crystal produced in the United States, Japan, and Europe. Thi