【摘要】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【摘要】第一篇:放縮法證明“數(shù)列+不等式”問題的兩條途徑 放縮法證明“數(shù)列+不等式”問題的兩條途徑 數(shù)列與不等式的綜合問題常常出現(xiàn)在高考的壓軸題中,是歷年命題的熱點,解決這類問題常常用到放縮法。用放縮法解...
2024-10-29 04:45
【摘要】第八講不等式與不等式組一、知識網(wǎng)絡(luò)結(jié)構(gòu)圖二、考點精析考點一:不等式基本性質(zhì)運用1.由x0D.a2,則a的取值范圍是( ?。〢.a(chǎn)0B.aC.a&l
2025-04-16 12:51
【摘要】......基本不等式習(xí)專題之基本不等式做題技巧【基本知識】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”)(4)當(dāng)且僅當(dāng)
2025-05-13 23:45
【摘要】不等式與不等式組專題復(fù)習(xí)(一)不等式考點1:不等式的定義知識點::用符號“<”“>”“≤”“≥”表示大小關(guān)系的式子叫做不等式。(像a+2≠a-2這樣用“≠”號表示不等關(guān)系的式子也是不等式。):①x是正數(shù),則x>0;②x是負數(shù),則x<0;③x是非負數(shù),則x≥0;④x是非正數(shù),則x≤0;⑤x大于y,則x-y>0;⑥x小于y,則x-y<0;
【摘要】第一篇:2012高考專題----數(shù)列與不等式放縮法 高考專題——放縮法 一、基本方法 1.“添舍”放縮 通過對不等式的一邊進行添項或減項以達到解題目的,這是常規(guī)思路。,b為不相等的兩正數(shù),且a...
2024-10-28 23:29
【摘要】2010數(shù)學(xué)不等式放縮大全滑縣六中高三數(shù)學(xué)備課組20摘錄:法一:約分法三:數(shù)學(xué)歸納法略。09陜西22:已知數(shù)列滿足,.略(Ⅱ)證明:(1)略(2)當(dāng)n=1時,,結(jié)論成立當(dāng)時,易知分母縮小迭代2.09廣東21摘錄:(2)證明:評注:,另還可以用數(shù)學(xué)歸納法。令,則,令,得,給定區(qū)間,則有,則函數(shù)在上單調(diào)遞減,∴,即
2025-08-20 22:59
【摘要】第一篇:證明數(shù)列前n項和不等式的定積分放縮法 證明數(shù)列前n項和不等式的定積分放縮法 摘要:本文深入分析數(shù)列與函數(shù)之間的聯(lián)系,結(jié)合高等數(shù)學(xué)中數(shù)項級數(shù)[4]的觀點研究高考證明數(shù)列前n項和不等式的相關(guān)問...
2024-11-03 22:04
【摘要】第一篇:放縮法是不等式證明中一種常用的方法 放縮法是不等式證明中一種常用的方法,也是一種非常重要的方法。在證明過程中,適當(dāng)?shù)剡M行放縮,可以化繁為簡、化難為易,達到事半功倍的效果。但放縮的范圍較難把握...
2024-10-29 04:54
【摘要】初二數(shù)學(xué)不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>4;(6)3-x-1;(7)2(x+1)3x;(8)3(x
2025-03-25 07:46
【摘要】不等式的解法舉例(2)——高次不等式與分式不等式的解法.教學(xué)目的:掌握簡單高次不等式與分式不等式的解法.教學(xué)重點:把四類分式不等式轉(zhuǎn)化為整式不等式來解,用轉(zhuǎn)化法、列表法與標(biāo)根法求解分式、高次不等式:整理→標(biāo)根→畫線→選解教學(xué)難點:1.分式不等式轉(zhuǎn)化為整式不等式來解,進而化歸到一元一次、一元二次不等式來解. 2.帶
2025-06-23 23:35
【摘要】不等式與不等式組綜合檢測題一、選擇題1,若-a>a,則a必為()2,已知a<0,-1<b<0,則a,ab,ab2之間的大小關(guān)系是()>ab>ab2>ab2>a>a>ab2D.ab<a<ab23,(
2024-11-12 02:11
【摘要】第一篇:57均值不等式與不等式的實際應(yīng)用 學(xué)案五十七:均值不等式與不等式的實際應(yīng)用 命題:閆桂女劉麗娟審核:【考綱要求】 1、了解均值不等式的證明過程 2、會用均值不等式解決簡單的最大(小)值...
2024-11-03 14:01
【摘要】精品資源不等式與不等式組復(fù)習(xí)課一、不等式及一元一次不等式概念判斷下列不等式哪些是一元一次不等式,哪些不是?1、2、3、4、5、二、不等式的性質(zhì)(用符號語言來表示)1、若①②③④2、若三、解下列一元一次不等式并將解集在數(shù)軸上表示。①
【摘要】高二數(shù)學(xué)競賽班二試講義第一講琴生不等式、冪平均不等式一、知識要點:1.琴生不等式凸函數(shù)的定義:設(shè)連續(xù)函數(shù)的定義域為,對于區(qū)間內(nèi)任意兩點,都有,則稱為上的下凸(凸)函數(shù);反之,若有,則稱為上的上凸(凹)函數(shù)。琴生(Jensen)不等式(1905年提出):若為上的下凸(凸)函數(shù),則(想象邊形的重心在圖象的上方,個點重合時“邊形”的重心在圖
2025-08-04 18:32