【摘要】雙曲線的簡單幾何性質(zhì)(二)取值范圍。的,求率為一象限的那條漸近線斜,設(shè)該雙曲線過第,的離心率,已知雙曲線kkebabyax]22[)00(2222?????的方程,求直線若兩點(diǎn),于交的直線與斜率為雙曲線Lyx4|AB|.BAL212322???.22的取
2024-11-18 15:25
【摘要】雙曲線的定義及標(biāo)準(zhǔn)方程yxF1F2OA2B2A1B1yxA1F1F2OA2)1,0(??ace橢圓雙曲線方程圖形范圍
2024-11-06 19:22
【摘要】yxoF2MF1(1)雙曲線標(biāo)準(zhǔn)方程中,a0,b0,但a不一定大于b;有別于橢圓中ab.(2)雙曲線標(biāo)準(zhǔn)方程中,如果x2項(xiàng)的系數(shù)是正的,那么焦點(diǎn)在x軸上;如果y2項(xiàng)的系數(shù)是正的,那么焦點(diǎn)在y軸上.有別于橢圓通過比較分母的大小來判定焦點(diǎn)在哪一坐標(biāo)軸上。(3)雙曲線標(biāo)準(zhǔn)方程中a、b、
2024-11-13 11:43
【摘要】雙曲線的性質(zhì)(一)222bac??定義圖象方程焦點(diǎn)的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??byax12
2024-11-18 08:47
【摘要】雙曲線1.3.4.點(diǎn)P處的切線PT平分△PF1F2在點(diǎn)P處的內(nèi)角.5.PT平分△PF1F2在點(diǎn)P處的內(nèi)角,則焦點(diǎn)在直線PT上的射影H點(diǎn)的軌跡是以實(shí)軸為直徑的圓,除去實(shí)軸的兩個(gè)端點(diǎn).6.以焦點(diǎn)弦PQ為直徑的圓必與對應(yīng)準(zhǔn)線相交.7.以焦點(diǎn)半徑PF1為直徑的圓必與以實(shí)軸為直徑的圓外切.8.設(shè)P為雙曲線上一點(diǎn),則△PF1F2的內(nèi)切圓必切于
2025-08-05 04:18
【摘要】圓錐曲線知識點(diǎn)小結(jié):橢圓:平面內(nèi)與兩個(gè)定點(diǎn)的距離之和等于定長(大于)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做橢圓的焦距。數(shù)學(xué)語言:常數(shù)2a=,軌跡是線段;常數(shù)2a,軌跡不存在;雙曲線:平面內(nèi)與兩個(gè)F1,F(xiàn)2的距離之差的絕對值等于常數(shù)(小于||F1F2)的點(diǎn)的軌跡叫做雙曲線。這兩個(gè)定點(diǎn)叫做雙曲線的焦點(diǎn),兩焦點(diǎn)的距離叫做雙曲線的焦距。數(shù)學(xué)語言
2025-08-10 15:54
【摘要】雙曲線1.到兩定點(diǎn)、的距離之差的絕對值等于6的點(diǎn)的軌跡()A.橢圓 B.線段 C.雙曲線 D.兩條射線2.方程表示雙曲線,則的取值范圍是 ()A. B. C. D.或3.雙曲線的焦距是 ()A.4 B. C.8 D.與有關(guān)4.已知m,n為兩個(gè)不相等的非零實(shí)數(shù),則方程mx-y+n=0與nx2
2025-06-23 15:17
【摘要】......圓錐曲線的方程與性質(zhì)1.橢圓(1)橢圓概念平面內(nèi)與兩個(gè)定點(diǎn)、的距離的和等于常數(shù)2(大于)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離2c叫橢圓的焦距。若為橢圓上任意一點(diǎn),則有。橢圓的標(biāo)準(zhǔn)
2025-06-19 02:06
【摘要】教學(xué)教法分析課前自主導(dǎo)學(xué)易錯(cuò)易誤辨析課堂互動探究當(dāng)堂雙基達(dá)標(biāo)課后知能檢測教師備課資源雙曲線的幾何性質(zhì)●三維目標(biāo)1.知識與技能(1)使學(xué)生理解和掌握雙曲線的范圍、對
2024-11-17 15:13
【摘要】......【學(xué)習(xí)目標(biāo)】、范圍、定點(diǎn)、離心率、漸近線等簡單性質(zhì)...【要點(diǎn)梳理】要點(diǎn)一、雙曲線的簡單幾何性質(zhì)雙曲線(a>0,b>0)的簡單幾何性質(zhì)范圍雙曲線上所有的點(diǎn)都在兩條平行直
2025-06-25 22:37
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修1-1《雙曲線的簡單幾何性質(zhì)》教學(xué)目標(biāo)?知識與技能目標(biāo)?了解平面解析幾何研究的主要問題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).理解雙曲線的范圍、對稱性及對稱軸,對稱中心、離心率、頂點(diǎn)、漸近線的概念;掌握雙曲線的標(biāo)準(zhǔn)方程、會用雙曲線的定義解決實(shí)際
2024-11-30 12:26
【摘要】橢圓的定義、性質(zhì)及標(biāo)準(zhǔn)方程1.橢圓的定義:⑴第一定義:平面內(nèi)與兩個(gè)定點(diǎn)的距離之和等于常數(shù)(大于)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做橢圓的焦距。⑵第二定義:動點(diǎn)到定點(diǎn)的距離和它到定直線的距離之比等于常數(shù),則動點(diǎn)的軌跡叫做橢圓。定點(diǎn)是橢圓的焦點(diǎn),定直線叫做橢圓的準(zhǔn)線,常數(shù)叫做橢圓的離心率。說明:①若常數(shù)等于,則動點(diǎn)軌跡是線段。②若常數(shù)小于,則動點(diǎn)
2025-08-10 15:59
2025-07-25 00:12
【摘要】平面幾何知識點(diǎn)匯總(一)知識點(diǎn)一相交線和平行線對頂角的性質(zhì):對頂角相等。:性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。:經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行。平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。:性質(zhì)1:兩直線平行,同位角相等。性質(zhì)2:兩直線平
2025-06-24 15:21
【摘要】第一章相交線與平行線1.鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角,如∠1與∠2。且∠1+∠2=180°2.對頂角:一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長線,像這樣的兩個(gè)角互為對頂角,如∠2與∠4。對頂角的性質(zhì):對頂角相等,即∠2=∠4,∠1=∠3:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。
2025-06-26 21:33