【摘要】第五章三角形第23講等腰三角形與直角三角形K課前自測,已知在△ABC中,點D在BC上,AB=AD=DC,∠B=80°,則∠C的度數(shù)為()A.30°B.40°C.45°D.60°3和7,則它的周長為
2025-06-14 18:01
【摘要】直角三角形、斜邊中線、等腰直角三角形專題一、直角三角形的性質(zhì)1.一塊直角三角板放在兩平行直線上,如圖,∠1+∠2= 度.2.如圖,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分線BE交AD于點F,AG平分∠DAC,求證:①∠BAD=∠C;②∠AEF=∠AFE;③AG⊥EF.3.如圖所示,在△ABC中,CD,BE是兩條高,那么圖中與∠A相等的角有
2025-03-25 06:30
【摘要】第五節(jié)直角三角形考點一勾股定理及其逆定理(5年5考)命題角度?勾股定理及其逆定理例1(2022·東營中考)在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于()A.10B.8C.6或10D.8或1010【分析】
2025-06-15 16:02
2025-06-14 18:09
【摘要】第四章圖形的認識19三角形與全等三角形目標方向理解三角形及其內(nèi)角、外角、中線、高線、角平分線的概念;掌握三角形的三邊關(guān)系,三角形的內(nèi)角和定理及其推論;熟練掌握三角形全等的性質(zhì)與判定和三角形全等的證明,理解三角形全等不僅是解決幾何問題的重要工具,而且是中考的核心內(nèi)容.探索并理解三角形與相交線、平行線和其他多邊形之間的內(nèi)在聯(lián)系,在復習中逐步
2024-11-30 15:07
【摘要】第四章三角形第20講解直角三角形01課后作業(yè)02能力提升目錄導航課后作業(yè)1.(2022德州)如圖,在4×4的正方形方格圖形中,小正方形的頂點稱為格點,△ABC的頂點都在格點上,則∠BAC的正弦值是.55
2025-06-12 14:36
【摘要】等腰三角形性質(zhì)的應用——復習課如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。ABCD121.等邊對等角的應用ABCD12解:∵AB=AC,∴∠ABC=∠C又∵BD=BC=AD,∴∠C=∠
2024-11-24 15:15
【摘要】如圖,在△ABC中,AB=AC.DAD⊥BCBD=CD∠BAD=∠CADAD是BC上的高線AD是BC上的中線AD是∠BAC的平分線性質(zhì)1、等腰三角形的兩底角相等:∠B=∠C性質(zhì)2、等腰三角形三線合一性質(zhì)3、等腰三角形是軸對稱圖形,
2025-08-05 10:34
【摘要】第四節(jié)等腰三角形考點一等腰三角形的性質(zhì)與判定(5年2考)例1(2022·桂林中考)如圖,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,則圖中等腰三角形的個數(shù)是.【分析】首先根據(jù)已知條件分別計算圖中每一個三角形每個角的度數(shù),然后根據(jù)等角對等邊解答,做題時
2025-06-12 17:12
【摘要】第四章圖形的認識§解直角三角形中考數(shù)學(安徽專用)A組2022—2022年安徽中考題組五年中考1.(2022安徽,19,10分)為了測量豎直旗桿AB的高度,某綜合實踐小組在地面D處豎直放置標桿CD,并在地面上水平放置一個平面鏡E,使得B,E,D在同一水平線上,如圖所示.該小組在標桿的F處通過平面
2025-06-20 23:45
【摘要】第四節(jié)等腰三角形考點一等腰三角形的性質(zhì)與判定例1(2022·四川雅安中考)已知:如圖,在△ABC中,AB=AC,∠C=72°,BC=,以點B為圓心,BC為半徑畫弧,交AC于點D,則線段AD的長為()5【分析】根據(jù)等腰三角形的性質(zhì)和三角形外角的性質(zhì),得出AD=
2025-06-15 20:43
2025-06-12 15:24
2025-06-17 20:20
【摘要】作業(yè)布置評價小結(jié)鞏固練習講授新課復習判定兩個三角形全等要具備什么條件?
2024-11-09 03:54
【摘要】等腰三角形羅源三中黃招良圖中有些你熟悉的圖形嗎?圖中有些你熟悉的圖形嗎?它們有什么共同特點?北京五塔寺西安半坡博物館斜拉橋梁體育觀看臺架埃及金字塔
2025-08-01 13:41