【摘要】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2024-11-12 12:11
【摘要】立體幾何綜合習(xí)題一、考點分析基本圖形1.棱柱——有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。①★②四棱柱底面為平行四邊形平行六面體側(cè)棱垂直于底面直平行六面體底面為矩形長方體底面為正方形正四棱柱側(cè)棱與底面邊長相等正方體
2025-04-17 12:18
【摘要】2009高考數(shù)學(xué)解答題專題攻略----立體幾何09高考立體幾何分析與預(yù)測:立體幾何是高中數(shù)學(xué)中的重要內(nèi)容,也是高考的熱點內(nèi)容。該部分新增加了三視圖,對三視圖的考查應(yīng)引起格外的注意。立體幾何在高考解答題中,常以空間幾何體(柱,錐,臺)為背景,考查幾何元素之間的位置關(guān)系。另外還應(yīng)注意非標(biāo)準(zhǔn)圖形的識別、三視圖的運用、圖形的翻折、求體積時的割補思想等,以及把運動的思想引進立體幾何。最近幾年綜合分
2025-01-15 10:22
【摘要】高一立體幾何證明專題練習(xí)一,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點,求證:(1)B,C,H,G四點共面;(2)平面EFA1∥平面BCHG.,在直三棱柱ABC-A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點.(1)求證:DE∥平面ABC;(
2025-03-26 05:39
【摘要】立體幾何復(fù)習(xí)講義【基礎(chǔ)回扣】1.平面平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。(1)證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內(nèi),推出點在面內(nèi)),這樣可根據(jù)公理2證明這些點都在這兩個平面的公共直線上。(2)證明共點問題,一般是先證
2025-06-07 21:19
【摘要】高三文科數(shù)學(xué)立體幾何翻折問題,AB=3,DC=1,∠BAD=45°,DE⊥AB(如圖1).現(xiàn)將△ADE沿DE折起,使得AE⊥EB(如圖2),連結(jié)AC,AB,設(shè)M是AB的中點.(1)求證:BC⊥平面AEC;(2)判斷直線EM是否平行于平面ACD,并說明理由.
2025-04-04 05:03
【摘要】第1頁共8頁立體幾何(文)一、知識要點:1、能識別三視圖所表示的空間幾何體;了解球、棱柱、棱錐、臺的表面積和體積的計算公式(不要求記憶公式)。2、理解空間直線、平面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理:◆公理1:如果一條直線上的兩點在一個平面內(nèi),這條直線上所有的點在此平面內(nèi).◆公理2:過不在
2024-11-02 19:39
【摘要】2020-2020年普通高等學(xué)校招生新課標(biāo)全國卷文科數(shù)學(xué)題集1全國卷文科數(shù)學(xué)試題集(6)——立體幾何1.(2020全國卷)8.已知某個幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個幾何體的體積是()A.34000cm3B.38000cm3C.32020cmD.3400
2024-11-02 10:22
【摘要】立體幾何(文)一、知識要點:1、能識別三視圖所表示的空間幾何體;了解球、棱柱、棱錐、臺的表面積和體積的計算公式(不要求記憶公式)。2、理解空間直線、平面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理:◆公理1:如果一條直線上的兩點在一個平面內(nèi),這條直線上所有的點在此平面內(nèi).◆公理2:過不在同一條直線上的三點,有且只有一個平面(三個推論).◆公理3:如果兩個
2025-08-09 16:48
【摘要】廣東高考文科數(shù)學(xué)真題模擬匯編13:立體幾何1.(2009廣州一模文數(shù))一個幾何體的三視圖及其尺寸(單位:cm)如圖3所示,則該幾何體的側(cè)面積為cm.圖1俯視圖22正(主)視圖222側(cè)(左)視圖2221.2.(2011廣州一模文數(shù))一空間幾何體的三
2025-08-09 09:18
【摘要】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長度或模.記為|,特別地:?①規(guī)定長度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個模相等且方向相同的向量稱為相等的向量.4.負(fù)向量:兩個模相等且方向相反的向量是互為負(fù)向量.如的相反向量記為-.
2025-04-17 08:18
【摘要】一輪復(fù)習(xí)之立體幾何姓名一輪復(fù)習(xí)之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設(shè)點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2025-07-24 12:16
【摘要】如何學(xué)好立體幾何立體幾何在歷年的高考中有兩到三道小題,必有一道大題。雖然分值比重不是特別大,但是起著舉足輕重的作用。下面就如何學(xué)好立體幾何談幾點建議。一立足課本,夯實基礎(chǔ)直線和平面這些內(nèi)容,是立體幾何的基礎(chǔ),學(xué)好這部分的一個捷徑就是認(rèn)真學(xué)習(xí)定理的證明,尤其是一些很關(guān)鍵的定理的證明。例如:三垂線定理。定理的內(nèi)容都很簡單,就是線與線,線與面,面與面之間的關(guān)系的闡述。但定理的
2024-10-04 17:14
【摘要】高中數(shù)學(xué)《立體幾何》大題及答案解析(理)1.(2009全國卷Ⅰ)如圖,四棱錐中,底面為矩形,底面,,,點在側(cè)棱上,。(I)證明:是側(cè)棱的中點;求二面角的大小。2.(2009全國卷Ⅱ)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點,DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二
2025-06-18 13:50
【摘要】2.簡單幾何體知識網(wǎng)絡(luò) 簡單幾何體結(jié)構(gòu)簡圖畫龍點晴概念棱柱:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行由這些面所圍成的幾何體稱為棱柱。兩個互相平行的面叫做棱柱的底面,其余各面叫做棱柱的側(cè)面,兩個側(cè)面的公共邊叫做棱柱的側(cè)棱,,兩個底面的距離叫做棱柱的高.棱柱的分類:按
2025-03-26 05:42