【摘要】三角函數公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2
2025-07-20 16:04
【摘要】 兩角和與差的正弦、余弦和正切基礎梳理1.兩角和與差的正弦、余弦、正切公式(1)C(α-β):cos(α-β)=cos_αcos_β+sin_αsin_β;(2)C(α+β):cos(α+β)=cos_αcos_β-sin_αsin_β;(3)S(α+β):sin(α+β)=sin_αcos_β+cos_αsin_β;(4)S(α-β):sin(α-β)=sin_
2025-06-23 18:30
【摘要】簡單的三角恒等變換一、填空題1.若π<α<π,sin2α=-,求tan________________2.已知sinθ=-,3π<θ<,則tan的值為___________.4.已知α為鈍角、β為銳角且sinα=,sinβ=,則cos的值為____________.5.設5π<θ<6π,cos=a,則sin的值等于________________
2025-03-25 06:58
【摘要】函數y=Asin(ωx+φ)的圖象(其實y=sinx是y=Asin(ωx+φ)在A=1,ω=1,φ=0時的情況)本節(jié)課我們來探索A,ω,φ對y=Asin(ωx+φ)圖象的影響?引入:函數y=Asin(ωx+φ)的圖象有什么特征?它的圖象與y=sinx的圖象又有什么關系呢?可
2025-07-25 23:41
【摘要】三角函數的圖象和性質函數y=Asin(ωx+φ)的圖象0-1/201/20y=1/2sinx0-2020y=2sinx0-1010y=sinx0x1、作出以下三個函數的圖象小結:函數y=Asinx的圖象是在y=sinx圖象的基礎上橫坐標不變縱坐標變成原來的A倍。A通常叫振幅。P49思考與交
2024-11-07 02:34
【摘要】東海高級中學20xx-20xx學年度高三理科數學單元檢測題(三角函數)一.填空題()sin()1(0,||π)fxAx????????對任意實數t,都有????ππ33ftft????.記()cos()1gxAx?????,則π()3g?-
2025-07-24 16:29
【摘要】2015-2016學年度依蘭縣高級中學4月測試卷 考試范圍:必修4、5;考試時間:120分鐘;命題人:依蘭縣高級中學劉朝亮1、等差數列的前項和為()A.54 B.45 C.36D.272、已知等比數列中,,則等于( ) 3、數列1,,,,……的一個通項公式是()A,=,B,=,C,=,
2025-04-04 04:28
【摘要】的面積是30,內角所對邊長分別為,。(Ⅰ)求;(Ⅱ)若,求的值。設函數,求函數的單調區(qū)間與極值。已知函數(Ⅰ)求的值;(Ⅱ)求的最大值和最小值設函數,,,且以為最小正周期.(1)求;w_w(2)求的解析式;(3)已知,求的值.w_已知函數(I)求函數的最小正周期。(II)求函數的最大
2025-07-25 00:01
【摘要】三角函數公式練習題(答案)1.1.()A.B.C.D.【答案】【解析】C試題分析:由題可知,;考點:任意角的三角函數2.已知,,()A.B.C.D.【答案】D【解析】試題分析:由①,所以②,由①②可得③,由①③得,,故
2025-06-22 22:19
【摘要】定義同角三角函數的基本關系圖像性質單位圓與三角函數線誘導公式Cα±βSα±β、Tα±βy=asin+bcosα的最值形如y=Asin(ωx+φ)+B圖像萬能公式和差化積公式積化和差公式Sα/2=Cα/2=Tα/2=S2α=C2α=T2α=
2025-07-22 02:27
【摘要】三角函數大題綜合訓練.(Ⅰ)求的最小正周期;(Ⅱ)求在區(qū)間上的最大值和最小值.(x)=cos(2x+)+sinx.(1)求函數f(x)的最大值和最小正周期.(2)設A,B,C為ABC的三個內角,若cosB=,,且C為銳角,求sinA.(Ⅰ)將函數化簡成的形式,并指出的周期;(Ⅱ)求函數上的最大值和最小值.(Ⅰ
2025-03-24 05:42
【摘要】三角函數的定義、誘導公式、同角三角函數的關系練習題學校:___________姓名:___________班級:___________考號:___________一、單選題1.已知角α的終邊經過點P(4,-3),則sin(π2+α)的值為( ?。〢.35B.-35C.45D.-452.已知角α的始邊與x軸非負半軸重合,終邊在射線4x-3y=0(
2025-07-23 20:30
【摘要】范文范例參考三角恒等變換適用學科數學適用年級高三適用區(qū)域福建課時時長(分鐘)120知識點教學目標教學重點教學難點教學過程一、復習預習二、知識講解1.兩角和與差的余弦、正弦、正切公式cos(α-β)=cosαcosβ+sinαsinβ (Cα-β)cos
2025-04-16 12:50
【摘要】......三角恒等變換【考情分析】三角函數是歷年高考重點考察內容之一,三角恒等變換的考查,經常以選擇與填空題的形式出現(xiàn),還常在解答題中與其它知識結合起來考查,其中升冪公式、降冪公式、輔助角公式是考查的重點.在考查三角知識的同時,又
2025-04-16 12:49
【摘要】范文范例參考三角恒等變換章末復習一、選擇題1.函數的最小正周期是().A.B.C.D.2.已知,,則()A.B.C.D.3.若,則=()(A)(B)(C)
2025-04-16 12:28