【正文】
Lowerbound Theorem If the stress field within the soil mass is stable and statically admissible, then collapse does not occur。在這篇文章中,三點(diǎn)確定的三角形三邊有限元法被利用與構(gòu)造在下邊界分析中的靜態(tài)允許應(yīng)力場和上邊界分析中的 速度 場。按照傳統(tǒng)的說法,在土力 學(xué)中,彈性理論是用來建立變形微分方程的,就象塑性理論是用來建立穩(wěn)定性問題的微分方程一樣 。由于它的簡單,在實(shí)踐中,極限平衡法是最被廣泛使用的。就簡單而言,下邊界荷載作用下,滑動不會發(fā)生,但是如果下邊界受到外加荷載的作用,則滑動可能立即發(fā)生。相似的 方法可以用于明確說明孔隙水壓力作用下的極限分析。它表示孔隙水壓力在內(nèi)部摩擦力等于零時(shí)的分析沒有影響,這就證實(shí)了用總應(yīng)力分析時(shí) 0?? 。公認(rèn)的力學(xué)理論包括剛體的轉(zhuǎn)動和持續(xù)變形。Pij ij ijGF? ? ??????? (2) 這里, ? 是非負(fù)的塑性比值,也就是當(dāng)發(fā)生塑性變形時(shí)的正直。 不需要用任何特殊的方式通過( 3)式和( 4)式把 Aij? ,AiT 和 AijX? 聯(lián)系在一起。 ij? 是真實(shí)的應(yīng)力, ij? 是真實(shí)的應(yīng)變率, iv 是速度場。 這里可以用內(nèi)部作用等式的形式來表示,由( 3)式得: 39。A B A B Bi i i i ij ijS V VT v dS X v dV dV????? ? ? (4) 這里, AiT 是邊界荷載; AijX? 是不包括滲透量和浮力的自重 AijX 是 包括滲透量和浮力的自重; Aij? 是在 AiT 和 AijX? 平衡下的總應(yīng)力張量; 39。 通過假設(shè)應(yīng)變函數(shù) F 配合塑性體潛在的應(yīng)變函數(shù) G,用伴隨的流動法則來定義塑性體應(yīng)變率,塑性應(yīng)變率可以從中得出: 39。 Slon 和 Kleenman 在考慮了上邊界和下邊界的情況下,利用了三點(diǎn)構(gòu)成的三邊線性代數(shù)的方法將孔隙水壓力計(jì)算出來的。在 Michalowsk 的研究中,假設(shè)剛體是沿著螺旋線破壞的。對于有效應(yīng)力的分析,考慮孔隙水壓力的作用是很有必要的。 極限分析法充分利用了邊界理論,得出了相對應(yīng)用于上下邊界的兩個(gè)嚴(yán)密的解。 自然土坡、填方土坡和挖方土坡的穩(wěn)定性問題是土木工程領(lǐng)域碰到的最常見的問題。微分方程必須用給定的邊界條件來解決。然而,眾所周知的是,從極限分析法中獲得的解是不嚴(yán)密的,因?yàn)樗炔粷M足靜態(tài)的允許條件,又不滿足動態(tài)的允許條件。 p = porewater pressure。()A B A B A Bi i i i ij ijs V VABij ij ijVT v d S X v d V d Vp d V??? ? ??????? ? ?? ( 3) Or 39。 and (2) a bination of rigid rotation and continuous deformation. Porewater pressure was assumed to be hydrostatic beneath a parabolic free water surface. Although their calculations led to correct answers, the physical interpretation of their calculation of energy dissipation, where the porewater pressures were considered as internal forces and had the effect of reducing internal energy dissipation for a given collapse mechanism, has been disputed. Porewater pressures may also be regarded as external force. In a study by Michalowski, rigid body rotation along a logspiral failure surface was assumed, and porewater pressure was calculated using the porewater pressure ratio ru=u/ǐz, where u=porewater pressure, ǐ=total unit weight of soil, and z=depth of the point below the soil surface. It was showed that the porewater pressure has no influence on the analysis when the internal friction angle is equal to zero, which validates the use of total stress analysis with Φ =0. In another study, Michalowski followed the same approach, except for the use of failure surface with different shapes to incorporate the effect of porewater pressure on upperbound analysis of slopes, the writers are not aware of any lowerbound limit analysis done in term of effective stresses. This is probably due to the increased in constructing statically admissible stress fields accounting also for the porewater pressures. The objectives of this paper are (1) present a finiteelement formulation in terms of effective stresses for limit analysis of soil slopes subjected to porewater pressures。ij? ) = yield function。 AijX = body forces including seepage and buoyancy forces。 that is, the true collapse load is definitely greater than the applied load. This can be written in the form of the virtual work equation, using (3), as 39。通過假設(shè)三角形頂點(diǎn)的線變量和元素變量,真實(shí)解應(yīng)該是一個(gè)線形的約束問題。為了獲得這個(gè)解,荷載由小到大變化,直到足夠大引起部分土體的滑坡。極限平衡法大部分建立在分塊理論的基礎(chǔ)上,在這種理論中,假設(shè)有一個(gè)破壞的滑動面,而且在此之上的土體被劃分為若干垂直土條,整個(gè)靜態(tài)平衡條件下假設(shè)的失穩(wěn) 表面是被確定的,一個(gè)臨界的滑動破裂面必須要找到,因?yàn)樗陌踩驍?shù) 最小。同樣,在上邊界作用外加荷載,滑坡也會立即發(fā)生。 在大量的實(shí)踐中,孔隙水壓力的影響被看作集中考慮在土坡穩(wěn)定性