【摘要】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三
2025-06-15 12:08
【摘要】等角對(duì)等邊班級(jí):__________姓名:__________一、填空題,已知等腰△ABC,AB=AC,若AB>BC,則△ABC為_(kāi)_________角三角形.△ABC,如右圖所示,其中∠B=∠C,則_______=________.__________,底邊上的__________,頂角__________
2024-11-11 13:15
【摘要】等腰三角形(二)◆隨堂檢測(cè)ABC△中,AB=AC,AB的垂直平分線與AC所在的直線相交所成的角為50?,則底角B?的度數(shù)為_(kāi)__________.等腰三角形一腰上的中線把等腰三角形的周長(zhǎng)分成9和12兩部分,則等腰三角形的腰長(zhǎng)為_(kāi)__________.,已知AB=AC,∠A=36o,AB的中垂
2024-11-11 05:30
【摘要】等腰三角形的判定等腰三角形定義是什么?有兩條邊相等的三角形等腰三角形性質(zhì)定理等邊對(duì)等角1、在△ABC中,AC=BC,∠B=800,則∠C=2、等腰三角形的一個(gè)內(nèi)角是1000,則其余兩個(gè)角分別是3、等腰三角形的一個(gè)內(nèi)角是700,則其余兩個(gè)角分別是
2024-11-09 12:23
【摘要】第一篇:等腰三角形教案 14.3等腰三角形 14.3.1.1等腰三角形 (一)教學(xué)目標(biāo) (一)教學(xué)知識(shí)點(diǎn) 1.等腰三角形的概念.2.等腰三角形的性質(zhì). 3.等腰三角形的概念及性質(zhì)的應(yīng)用. ...
2024-11-15 05:57
【摘要】第一篇:等腰三角形說(shuō)課稿 、教材分析 1、教材的地位和作用:《等腰三角形的性質(zhì)》是初中幾何第二冊(cè)第三章《三角形(二)》的第一課時(shí),是全等三角形的續(xù)篇。等腰三角形是最常見(jiàn)的圖形,由于它具有一些特殊...
2024-11-15 06:05
【摘要】宇軒圖書(shū)下一頁(yè)上一頁(yè)末頁(yè)目錄首頁(yè)第20講等腰三角形考點(diǎn)知識(shí)精講宇軒圖書(shū)下一頁(yè)上一頁(yè)末頁(yè)目錄首頁(yè)考點(diǎn)訓(xùn)練中考典例精析舉一反三考點(diǎn)知識(shí)精講
2025-01-15 06:47
【摘要】同學(xué)們好!【看看誰(shuí)的手巧】請(qǐng)把一根塑料管剪成三段,把它們首尾相連成一個(gè)等腰三角形剩下的兩邊長(zhǎng)為8cm和6cm等腰三角形圓規(guī)刻度尺量角器123能否用你得到的工具來(lái)判斷△ABC是不是等腰三角形?★等邊對(duì)等角★等角對(duì)等邊因?yàn)锳B=AC所以∠B=∠C所
2024-11-03 15:44
【摘要】等腰三角形的判定臨海中學(xué)初二備課組等腰三角形的判定學(xué)習(xí)目標(biāo)自學(xué)指導(dǎo)討論練習(xí)課堂作業(yè)我們?cè)谏弦还?jié)學(xué)習(xí)了等腰三角形的性質(zhì)?,F(xiàn)在你能回答我一些問(wèn)題嗎?一、復(fù)習(xí):1、等腰三角形的性質(zhì)定理是什么?等腰三角形的兩個(gè)底角相等。(可以簡(jiǎn)稱:等邊對(duì)等角)2、這個(gè)定理
2025-08-01 18:01
【摘要】等腰三角形的性質(zhì)數(shù)科院李紫20222202225ABC⑴由“兩邊相等”得到“等腰三角形”.∵△ABC中,AB=AC,∴△ABC是等腰三角形.⑵由“等腰三角形”得到“兩邊相等”.如圖,∵△ABC是等腰三角
2025-08-01 13:41
【摘要】復(fù)習(xí)引入兩腰相等;等腰三角形有哪些特征呢?ABC,簡(jiǎn)稱“在同一個(gè)三角形中,等邊對(duì)等角”;、底邊上的中線和底邊上的高互相重合。簡(jiǎn)稱“等腰三角形三線合一”,對(duì)稱軸是底邊的中垂線。?:ΔABC中,已知AB=AC,?圖中有哪些角相等?∠B=∠C在同一個(gè)三角形
【摘要】等腰三角形兩腰相等;等腰三角形兩底角相等;等腰三角形“三線合一”;……問(wèn)題1:小區(qū)內(nèi)有一個(gè)三角形小花壇,現(xiàn)在想把它分割成兩個(gè)三角形,使之可以種上不同的花。你會(huì)怎么分?ABCP問(wèn)題2:如果要分割成兩個(gè)等腰三角形呢?原三角形的角度不知道。無(wú)法分!從頂點(diǎn)引一條線段問(wèn)題3:如果花壇
2024-11-24 15:15
【摘要】等腰三角形性質(zhì)的應(yīng)用——復(fù)習(xí)課如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求△ABC各角的度數(shù)。ABCD121.等邊對(duì)等角的應(yīng)用ABCD12解:∵AB=AC,∴∠ABC=∠C又∵BD=BC=AD,∴∠C=∠
【摘要】等腰三角形的性質(zhì)如圖,把一張長(zhǎng)方形紙片按圖中的虛線對(duì)折,并剪去陰影部分,再把它展開(kāi),得△ABCACDBAC和AB有什么關(guān)系?這個(gè)三角形有什么特點(diǎn)?探索:探究ACBBBBBBBB(B)ACB
2024-11-24 15:53
【摘要】認(rèn)識(shí)三角形西師大版四年級(jí)數(shù)學(xué)下冊(cè)本節(jié)課我們主要來(lái)認(rèn)識(shí)三角形,同學(xué)們結(jié)合生活實(shí)際理解并掌握三角形的概念以及組成,能夠判斷哪些圖形是三角形,能夠解決相關(guān)的實(shí)際問(wèn)題。日常生活中,有關(guān)三角形的實(shí)例說(shuō)一說(shuō):
2024-11-11 04:36