【摘要】135x55x30°1、求下列三角形中的xX=1253x?課前練習(xí):課前練習(xí):2、下列圖形是不是軸對稱圖形,如果是請畫出它的對稱軸。正方形矩形等腰三角形1、我們昨天所學(xué)的圓是不是軸對稱圖形?如果是,它的對稱軸是什么?你能找到多少條對稱軸?(同學(xué)之間進(jìn)行交流)結(jié)
2025-08-01 17:46
【摘要】一、選擇題1.已知P為⊙O內(nèi)一點(diǎn),且OP=2cm,如果⊙O的半徑是3cm,那么過P點(diǎn)的最短的弦等于[]2.在直徑是20cm的⊙O中,AB是60°,那么弦AB的弦心距是[]二、計(jì)算題3.如圖,CO是圓的半徑,AB是弦,且AB⊥CO于E,CE=1cm,AB=10cm,求半徑CO
2024-11-15 00:39
【摘要】1.4線段、角的軸對稱性⒈下列圖形中,不是軸對稱圖形的是()A.兩條相交直線B.線段⒉到三角形的三個(gè)頂點(diǎn)距離相等的點(diǎn)是()
2024-11-15 17:53
【摘要】第三章圓2.圓的對稱性(一)一、學(xué)生知識狀況分析學(xué)生的知識技能基礎(chǔ):學(xué)生在七、八年級已經(jīng)學(xué)習(xí)過軸對稱圖形以及中心對稱圖形的有關(guān)概念及性質(zhì),以及本節(jié)定理的證明要用到三角形全等的知識等。學(xué)生的活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在平時(shí)的學(xué)習(xí)中,學(xué)生逐步適應(yīng)應(yīng)用多種手段和方法探究圖形的性質(zhì)。同時(shí),在平時(shí)的教學(xué)中,我們都鼓勵(lì)學(xué)生獨(dú)立探索和四人小組互
2024-12-09 08:13
【摘要】九年級數(shù)學(xué)(上)第四章:對圓的進(jìn)一步認(rèn)識-垂徑定理圓的對稱性?圓是軸對稱圖形嗎?想一想1駛向勝利的彼岸如果是,它的對稱軸是什么?你能找到多少條對稱軸?●O你是用什么方法解決上述問題的??圓是中心對稱圖形嗎?如果是,它的對稱中心是什么?你能找到多少條對稱軸?你又是用什
2024-12-08 09:59
【摘要】一、知識點(diǎn):1.什么叫軸對稱:如果把一個(gè)圖形沿著某一條直線折疊后,能夠與另一個(gè)圖形重合,那么這兩個(gè)圖形關(guān)于這條直線成軸對稱,這條直線叫做對稱軸,兩個(gè)圖形中的對應(yīng)點(diǎn)叫做對稱點(diǎn)。2.什么叫軸對稱圖形:如果把一個(gè)圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱圖形,這條直線叫做對稱軸。3.軸對稱
2024-12-08 02:28
【摘要】ABCDO第2課時(shí)§圓的對稱性教學(xué)目標(biāo)1、經(jīng)歷探索圓的對稱性及相關(guān)性質(zhì),2、理解圓的對稱性及相關(guān)性質(zhì)3、進(jìn)一步體會和理解研究幾何圖形的各種方法教學(xué)重點(diǎn)和難點(diǎn)重點(diǎn):垂徑定理及其逆定理難點(diǎn):垂徑定理及其逆定理教學(xué)過程設(shè)計(jì)一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問
2024-12-03 05:24
【摘要】杠桿2021年8月4日一、杠桿:在物理學(xué)中,將一根在力作用下可繞一固定點(diǎn)轉(zhuǎn)動(dòng)的硬棒稱做杠桿(level).:(1)不變形,討論:是否一定要是直的形狀?(2)有支點(diǎn),支點(diǎn)一定在杠桿上:
2024-12-05 03:02
【摘要】圓的對稱性教學(xué)目標(biāo):(1)知識與能力:通過本課的學(xué)習(xí),學(xué)生在知識上要了解圓的對稱性及垂徑定理,在能力上要學(xué)會從表象中抽象出本質(zhì)規(guī)律,提高邏輯思維能力與推理能力。(2)過程與方法:在教學(xué)過程中,要讓學(xué)生親自動(dòng)手去做去體會,并讓他們相互交流,然后根據(jù)實(shí)際情況加以啟發(fā),引導(dǎo)讓他們自己去總結(jié)出規(guī)律。(3)情感、態(tài)度與價(jià)值觀:A、本課
2024-11-19 08:37
【摘要】2021/1/6第三章圓第二節(jié)圓的對稱性(一)駛向勝利的彼岸2021/1/6問題:前面我們已探討過軸對稱圖形,哪位同學(xué)能敘述一下軸對稱圖形的定義?我們是用什么方法研究軸對稱圖形的?I.創(chuàng)設(shè)問題情境,引入新課駛向勝利的彼岸2021/1/6Ⅱ.講授新課?圓是軸對稱圖形嗎
2024-11-30 08:16
【摘要】第2課時(shí)§圓的對稱性知識目標(biāo):經(jīng)歷探索圓的對稱性及相關(guān)性質(zhì);理解圓的對稱性及相關(guān)性質(zhì)進(jìn)一步體會和理解研究幾何圖形的各種方法德育目標(biāo):培養(yǎng)學(xué)生科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度和開拓進(jìn)取的精神能力目標(biāo):培養(yǎng)學(xué)生觀察、分析、探索能力和創(chuàng)造力教學(xué)重點(diǎn)和難點(diǎn)重點(diǎn):垂徑定理及其逆定理難點(diǎn):垂徑定理及其逆定理
2024-11-29 12:27
【摘要】、角的軸對稱性一、知識點(diǎn):1.線段的軸對稱性:①線段是軸對稱圖形,對稱軸有兩條;一條是線段所在的直線,另一條是這條線段的垂直平分線。②線段的垂直平分線上的點(diǎn)到線段兩端的距離相等。③到線段兩端距離相等的點(diǎn),在這條線段的垂直平分線上。結(jié)論:線段的垂直平分線是到線段兩端距離相等的點(diǎn)的集合2.角的軸對稱性:①角是
【摘要】猜一猜請同學(xué)們觀察屏幕上兩個(gè)半徑相等的圓。請回答:它們能重合嗎?如果能重合,請將它們的圓心固定在一起。O,然后將其中一個(gè)圓旋轉(zhuǎn)任意一個(gè)角度,這時(shí)兩個(gè)圓還重合嗎?O歸納:圓具有旋轉(zhuǎn)不變性,即一個(gè)圓繞著它的圓心旋轉(zhuǎn)任意一個(gè)角度,都能與原來的圓重合。因此,圓是中心對稱圓形,對稱中心為圓心。圓
2024-11-30 08:37
【摘要】.圓的對稱性(2)復(fù)習(xí)如圖,若AB=CD則()若OABCD⌒⌒AB=
2024-12-08 02:56
【摘要】?1、掌握角的軸對稱性;?2、掌握角的性質(zhì)定理;?觀看動(dòng)畫;?說明了什么??角是______圖形,_____________是它的對稱軸;軸對稱角平分線所在的直線?1、觀看動(dòng)畫;?2、說明了什么??角平分線上的點(diǎn)到____________相等;角的兩邊距離?
2024-11-19 09:52