【摘要】兩角差的余弦公式教學目的:經(jīng)歷用向量數(shù)量積推導出兩角差的余弦公式的過程,進一步體會向量方法的作用;掌握兩角差的余弦公式的結構特征,并會應用。教學重點:兩角差的余弦公式結構及其應用教學難點:兩角差的余弦公式的推導。教學過程一、新課引入課本P136的問題二、新課[1、問題的提出co
2024-12-08 22:40
【摘要】任意角的三角函數(shù)課本例題是我們學習的模版,我們可以通過模仿它完成其他同類練習,還可以通過掌握它的思想促類旁通、舉一反三。如果在平時學習中我們能自己將例題改編成同類題并解決它們,我們的解題水平會有很大的提高。課本例6:若3sin5???,求cos?、?tan的值。題型分析:本題實際上是考查同角三角函數(shù)關系中平方關系以及商數(shù)關系的直接應用。
2024-11-19 20:39
【摘要】任意角的三角函數(shù)【學習要求】1.通過借助單位圓理解并掌握任意角的三角函數(shù)定義,了解三角函數(shù)是以實數(shù)為自變量的函數(shù).2.借助任意角三角函數(shù)的定義理解并掌握正弦、余弦、正切函數(shù)在各象限內(nèi)的符號.3.通過對任意角的三角函數(shù)定義的理解,掌握終邊相同角的同一三角函數(shù)值相等.【學法指導】1.在初中所學習的銳角三角函數(shù)的基礎上過渡到任意角三角函數(shù)的概
2024-11-19 23:27
【摘要】課題任意角的三角函數(shù)教學目標知識與技能任意角的三角函數(shù)的定義,會求角α的各三角函數(shù)值過程與方法正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù)情感態(tài)度價值觀學習轉化的思想,培養(yǎng)學生嚴謹治學、一絲不茍的科學精神重點任意角的三角函數(shù)的定義;以及這三種函數(shù)的第一組誘導公式。難點用
【摘要】正弦函數(shù)、余弦函數(shù)的圖像正弦線MP余弦線OM正切線AT,,的幾何意義是什么?sinaacosatan:yxxO-1?PMTA(1,0)1-102??23??22?6
2024-11-17 12:03
【摘要】利用三角函數(shù)定義解題設角?的終邊上任意一點P的坐標是),(yx,它與原點的距離是r(22yxr??),那么ry??sin,rx??cos,xy??tan,利用三角函數(shù)的定義,可巧妙地解決一類三角函數(shù)題。一、求值:例1:已知31tan??x,求????22coscossin2sin3
【摘要】任意角的三角函數(shù)【學習要求】1.掌握正弦、余弦、正切函數(shù)的定義域.2.了解三角函數(shù)線的意義,能用三角函數(shù)線表示一個角的正弦、余弦和正切.3.能利用三角函數(shù)線解決一些簡單的三角函數(shù)問題.【學法指導】1.三角函數(shù)線是利用數(shù)形結合的思想解決有關問題的重要工具,利用三角函數(shù)線可以解或證明三角不等式,求函數(shù)的定義域及比較大小,三角函數(shù)線也是后面將
【摘要】課題任意角的三角函數(shù)(二)教學目標知識與技能利用三角函數(shù)線表示正弦、余弦、正切的三角函數(shù)值;利用三角函數(shù)線比較同名三角函數(shù)值的大小及表示角的范圍。過程與方法掌握用單位圓中的線段表示三角函數(shù)值;從而使學生對三角函數(shù)的定義域、值域有更深的理解。情感態(tài)度價值觀學習轉化的思想,培養(yǎng)學生嚴謹治學、一絲不茍的科
【摘要】第3課兩角和與差的三角函數(shù)激活思維D1.tan2,tan()3tan(2)151.1...277ABCD???????????若,則的值為()激活思維A2、若A、B是三角形△ABC的內(nèi)角并且(1+tanA)(1+tanB)=2,則A
2024-11-10 01:05
【摘要】兩角和與差的三角函數(shù)仁化二中張文斌兩角和與差公式??sin?????cos??????tan????tantantan()(1tantan)?????????1tantan()41tan????
2024-11-11 21:11
【摘要】兩角和與差的三角函數(shù)兩角差的余弦公式如何用任意角α,β的正弦、余弦值來表示cos(α-β)呢?探究1你認為cos(α-β)=cosα-cosβ成立嗎?第一步:探求表示結果探究方法指導第二步:對結果的正確性加以證明你認為cos(α-β)=cosαcosβ+sinαsinβ成立嗎?
2025-07-25 21:01
【摘要】、余弦、正切公式2020、12、24一、復習:?)cos(????C)(???簡記:兩角差的余弦公式??)cos(??????sinsincoscos?同名積,符號反。二、公式的推導??)cos(??)](cos[???????
2024-11-18 12:17
【摘要】2020/12/25平面向量數(shù)量積運算律2020/12/25規(guī)定:零向量與任意向量的數(shù)量積為0,即0.??0a1OBba向量叫做向量在向量上的正射影已知兩個非零向量a和b,它們的夾角為?,我們把數(shù)量
2024-11-18 12:10
【摘要】高中新課程數(shù)學必修④第三課時(習題課)例1彈簧上掛的小球做上下振動時,小球離開平衡位置的距離s(cm)隨時間t(s)的變化曲線是一個三角函數(shù)的圖象,如圖.(1)求這條曲線對應的函數(shù)解析式;(2)小球在開始振動時,離開平衡位置的位移是多少?4t/ss/cmO
【摘要】三角函數(shù)的誘導公式一、錯解點擊是否存在角α,β,α∈(2??,2?),β∈(0,π),使得等式sin(3π-α)=2cos(2?-β),3cos(-α)=-2cos(π+β)同時成立?若存在,求出α,β的值;若不存在,請說明理由.錯解:將已知條件化為???????,cos2