【摘要】?函數(shù)的和、差、積、商的導(dǎo)數(shù)為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)
2025-11-09 08:47
【摘要】導(dǎo)數(shù)的概念[教學(xué)目的]、思想和方法;正確理解導(dǎo)數(shù)的定義、幾何意義;,建立導(dǎo)數(shù)的概念;掌握用導(dǎo)數(shù)的定義求導(dǎo)數(shù)的一般方法,讓學(xué)生積極主動地探索導(dǎo)數(shù)概念的形成過程,鍛煉運(yùn)用分析、抽象、歸納、總結(jié)形成數(shù)學(xué)概念的能力,體會數(shù)學(xué)知識在現(xiàn)實(shí)生活中的廣泛應(yīng)用。[教學(xué)重點(diǎn)和難點(diǎn)]導(dǎo)數(shù)的概念是本節(jié)的重點(diǎn)和難點(diǎn)[教學(xué)方法]講授啟發(fā),自學(xué)演練。
2024-12-08 01:51
【摘要】PQoxyy=f(x)割線切線l如圖,設(shè)Q為曲線C上不同于P的一點(diǎn),直線PQ稱為曲線的割線.yOxPQ●P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?●切線定義隨著點(diǎn)Q沿曲線C向點(diǎn)P運(yùn)動,直線PQ在點(diǎn)P附近逼近曲線C,
2025-11-09 08:56
【摘要】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)锳,區(qū)間IA.?如果對于區(qū)間I內(nèi)的任意兩個值x1、x2,當(dāng)x1<x2時,都有f(x1)<f(x2),那么就說y=f(x)在區(qū)間I上是單調(diào)增函數(shù),I稱為y=f(x)的單調(diào)增區(qū)間.如果對于區(qū)間I內(nèi)的任意兩個值x1、x2
【摘要】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用——極大值與極小值一般地,設(shè)函數(shù)y=f(x),aby=f(x)xoyy=f(x)xoyab導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系知識回顧1)如果在某區(qū)間上,那么f(x)為該區(qū)間上的增函數(shù),?f(x)02)如果在某區(qū)間上
2025-11-08 23:31
【摘要】導(dǎo)數(shù)及其應(yīng)用第一章一.創(chuàng)設(shè)情景為了描述現(xiàn)實(shí)世界中運(yùn)動、過程等變化著的現(xiàn)象,在數(shù)學(xué)中引入了函數(shù),隨著對函數(shù)的研究,產(chǎn)生了微積分,微積分的創(chuàng)立以自然科學(xué)中四類問題的處理直接相關(guān):一、已知物體運(yùn)動的路程作為時間的函數(shù),求物體在任意時刻的速度與加速度等;二、求曲線的切線;三、求已知函數(shù)的最大值與最小值
2025-11-08 11:59
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用第1課時平均變化率教學(xué)目標(biāo):,經(jīng)歷運(yùn)用數(shù)學(xué)描述和刻畫現(xiàn)實(shí)世界的過程,體會數(shù)學(xué)的博大精深以及學(xué)習(xí)數(shù)學(xué)的意義;,為后續(xù)建立瞬時變化率和導(dǎo)數(shù)的數(shù)學(xué)模型提供豐富的背景.教學(xué)重點(diǎn):平均變化率的實(shí)際意義與數(shù)學(xué)意義教學(xué)難點(diǎn):對生活現(xiàn)象作出數(shù)學(xué)解釋教學(xué)過程:Ⅰ.問題
2025-11-10 20:37
【摘要】人教新課標(biāo)版(A)選修1-1變化率與導(dǎo)數(shù)同步練習(xí)題【基礎(chǔ)演練】題型一:變化率問題與導(dǎo)數(shù)概念一般地,????1212xxxfxfxf???△△我們稱為平均變化率,如果0x?△時,????xxfxxflimxflim000x0x△△△△△△?????存在,稱此極限值為函數(shù)??xfy?在0x處的
2025-11-06 21:17
【摘要】導(dǎo)數(shù)的概念及其幾何意義導(dǎo)數(shù)的概念同步練習(xí)一,選擇題:1.已知函數(shù)f(x)=2x+5,當(dāng)x從2變化到4時,函數(shù)的平均變化率是()A、2B、4C、2D、-22.一個物體的運(yùn)動方程為21stt=-+其中S的單位是米,t的單位
2025-11-26 06:34
【摘要】變化率與導(dǎo)數(shù)第三章§1變化的快慢與變化率第三章課堂典例探究2課時作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí).2.掌握函數(shù)平均變化率的求法.3.理解瞬時變化率的概念.,當(dāng)空氣容量從V1增加到V2時,氣球的半徑從r(V1)增加到r(V2),氣球的平均膨脹率是________
2025-11-07 23:23
【摘要】-*-第三章變化率與導(dǎo)數(shù)-*-§1變化的快慢與變化率首頁XINZHIDAOXUE新知導(dǎo)學(xué)ZHONGNANTANJIU重難探究DANGTANGJIANCE當(dāng)堂檢測學(xué)習(xí)目標(biāo)思維脈絡(luò)1.理解函數(shù)平均變化率與瞬時變化率的概念.2.會求給定函數(shù)在某個區(qū)間上的平均變化率,并能根據(jù)函
【摘要】導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用新課引入:導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)例1:在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無
2025-11-08 17:10
【摘要】(1)1、實(shí)際問題中的應(yīng)用.在日常生活、生產(chǎn)和科研中,常常會遇到求函數(shù)的最大(小)值的問題.建立目標(biāo)函數(shù),然后利用導(dǎo)數(shù)的方法求最值是求解這類問題常見的解題思路.在建立目標(biāo)函數(shù)時,一定要注意確定函數(shù)的定義域.在實(shí)際問題中,有時會遇到函數(shù)在區(qū)間內(nèi)只有一個點(diǎn)使的情形,如果函數(shù)在這個點(diǎn)
【摘要】-*-本章整合網(wǎng)絡(luò)構(gòu)建專題探究變化率與導(dǎo)數(shù)變化率平均變化率瞬時變化率導(dǎo)數(shù)導(dǎo)數(shù)的概念導(dǎo)數(shù)的幾何意義導(dǎo)數(shù)的計(jì)算定義法公式法導(dǎo)數(shù)的四則運(yùn)算法則
2025-11-08 08:42
【摘要】問題0增加到100公里/小時需秒,另一款寶馬需,哪款車的加速性能更好?問題,甲用6年時間掙到12萬元,乙用6個月時間掙到2萬元,如何比較和評價兩人的經(jīng)營成果?時間3月18日4月18日4月20日日最高氣溫℃℃℃問題3月和4月某天日最高氣溫記載.加速快獲利快氣溫變化快問題4:高臺跳水
2025-04-29 01:08