【正文】
coefficient 1. 1 is the amplification coefficient attributed to the wave reflection. When x 1% is larger than the width of deck B , it is taken as B。 Ren et al . , 2007) . In some investigations, the forces were theoretically analyzed based on momentum and energy considerations (Wang, 1970) . Goda ( 1967) suggested an empirical formula for uplift forces on the deck of trestle bridge based on the momentum theory considering that the added mass of water varies with time. He held that it was the impulsive ponent contributing to the maximum uplift loads on the deck of exposed trestle bridge. A relatively simple and widely used formula to estimate uplift load on deck was remended in The Handbook for Design of Harbor Projects in China ( 1994) . Guo and Cai ( 1980) carried out laboratory tests that measured uplift loads acting on horizontal plate, ??type deck with downstanding longitudinal beams in shallow water, and horizontal plate exposed to breaking waves, and then proposed an empirical model. Zhou and Chen ( 2003, 2004) reported another experimental study on wave uplift on horizontal slab, taking into account the effect of the clearance, the wave steepness and the width of deck. The wave uplift is general ly considered to be made up of two ponents, one is short duration impact force and another is long duration force. The impact ponent mostly exceeds the slowvarying one and in some cases up to more than 10 times in magnitude. Owing to the plexity of influencing factors related to the impulsive uplift load, guidance with respect to the force is not readily available. Most of the existing models are presented based on regular wave tests, and the measured data is very dispersed over the range of measurements for above methods, which results in significant discrepancies among the results of different models, even though the existing methods can likely provide adequate estimates of loads under their own situations. Further research is strongly remended for systematic investigation.2. Experimental Setup and ProcedureThe wave tests were conducted in a wave flume of 1. 0 m wide, 1. 2 m deep, 80 m long, as shown in Fig. 1. The service part of the flume was divided into two parts, 0. 5 m and 0. 5 m respectively. One is the test section。 uplif t force。 ENG。在中國港口項目的設計手冊,人民交通出版社,北京。裸露的碼頭,港口工程,(6)上層建筑的托力: 9?13的實驗研究。通過所有測試結(jié)果可以得出一種新的估測方法,該方法考慮到兩個主要因素,即相對間隙和相對甲板寬度。均勻分布相應的壓力相對較小,而分布的長度是隨著大波長度的增加和消除而減少和增加。從研究的結(jié)論中得出,它幾乎符合75 %的測試數(shù)據(jù)集的韋伯分布,主要是由那些相關(guān)情況而使間隙過大。此外,應注意下梁和停泊成員的力度,貢獻大曲線在凈空高級別碼頭的上層建筑,但在這種情況下,波不能達到甲板,甲板上的力度是零。比較結(jié)果顯示以下細節(jié):若僅作為一個結(jié)果,而不考慮甲板寬度的影響,現(xiàn)有的指導模型高估了寬甲板(寬度B = LS )的力度,但在狹窄的甲板上(寬度= L處/ 8 )卻低估了其力度。基于測量數(shù)據(jù)的分析,估測新方法開發(fā)利用信封所有的測試,以確保在工程應用中的安全,如式 (3)所示 。假設橋面寬度比一次波長大,考慮到二次波的經(jīng)驗值可以預計出總的力度將增加。在具有相同波高的情況下,波動力學是相同的,這意味著此時最大的沖擊壓力將取決于間隙和波陡。這表明,力先隨著間隙的日益增大增至最大值,然后再下降。 間隙的影響甲板上的無量綱上升負荷 相對關(guān) 繪在圖5中 其中P1%表示甲板長度單位波在甲板舉力(超越概率為1 % )的最高值,該長度方向垂直于波的傳播方向。這將導致在浮升力過高估計。這意味著,舉力最大的沖擊壓力不是最大的。每一波集的持續(xù)時間為5? 9分鐘,波數(shù)為120 ?150 。橫梁(中心到中心)之間的距離為24 .75厘米。2.實驗設置和程序波浪水槽波的測試分別在1. 0米寬,80米長的水槽中進行,如圖1所示 。他認為這是沖力的組成部分,有助于計算裸露的棧橋甲板上的最大浮升力。此外,其他應考慮的因素,如材料成本,這表明適當選擇橋面標高和碼頭的結(jié)構(gòu)設計是非常有必要的。表現(xiàn)一個比較新的估測模型和現(xiàn)在廣泛使用的三種估測模型之間的關(guān)系。畢業(yè)設計開題報告題 目: 南通港碼頭工程設計 甲板上不規(guī)則波的舉力試驗研究摘要: 實驗室設置探討不規(guī)則波裸露的高樁碼頭上升負荷。這些結(jié)果被用來作為碼頭結(jié)構(gòu)設計有益的參考。因此,應當準確的估測大大甲板上甲板波上升與在各種波浪條件下不同結(jié)構(gòu)的幾何負載離子,使之在設計使用中成為重要指標。中國港灣工程(1994)設計手冊中的建議用一個相對簡單且廣泛使用的公式來估計甲板上的浮升力。將所提供的水槽的一部分,分為兩部分。向下的縱向梁高5厘米, 2厘米寬。每個測試組重復3次,這樣可以保證測量數(shù)據(jù)的可靠性。均勻分布相應的壓力相對較小,而分布的長度是大的。這是可以理解的上升壓力的表面(即波作用面)是密切相關(guān)的波接觸長度。 上半年%入射波高(超越概率1%)。應當指出,相應的高峰上升力與相對的間隙不是一個固定值。在間隙過大的情況下,壓力峰值通常出現(xiàn)在大波陡處,而高峰期的壓力將出現(xiàn)在小間隙情況下小的波陡處。所以從上面分布長度與波作用寬度的分析可以看出,只考慮到用波長來表示壓力分布的長度是不合理的。 比較的測量與估測的無量綱舉力的新方法波在甲板上升負荷估測公式(3)與圖8和圖9中測得的數(shù)據(jù)的比較表明,新的估測方法,給出了一個上升幅度大曲線的好成績,而在這個模型中的偏差主要來源于是小幅度的力度。根據(jù)現(xiàn)有的指導模型估測,最大的抬升力出現(xiàn)在靜止水位,其中不同的趨勢仍然出現(xiàn)在在上述測試中水位的相對間隙處。因此,間隙過大的情況下,甲板上的力度,向下的光束和靠泊部分應分別計算,總和將會是期望的結(jié)果。更高的間隙偏差是可以理解的,因為更高層次的甲板上,在隨機波浪序列的小浪不能達到甲板,此時相應的力度數(shù)據(jù)集的值是零。概括和分析實驗數(shù)據(jù)證實,該統(tǒng)一類型的分布,長度相當于1 % 。結(jié)果表明,新的估測方法,給出了一個大幅度上升曲線的好成績,而在這個模型中的偏差主要來源于是小幅度的力度。 (在中國)3. Patarapanich , M. ,1984 。 (在中國)5. 王, H. ,1970年。 ,奧蘭多, ASCE , 3 , 2573 ? 2583 。 highpile jetty1. IntroductionAlong with the increase of the demand for coastal resources exploitation, the need for developing open structures, such as marginal quay, detached wharf, artificial island, mooring dolphin outside harbor, and offshore platform is of considerable interest. These facilities are usually constructed in locations without breakwater protection, and severe damages of deck often occur due to large waves reaching the superstructure. A number of similar ocean structures have been reportedly damaged as a result of irrational deck elevation. For structures deployed at such sites, the deck level should be designed at an allowance to ensure a low probability of occurrence of wave forces on the superstructure and the deck should be strong enough to withstand the wave loads. In addition, other factors should be considered such as material costs which indicates appropriate selection of deck elevation and structural design of the wharf . Therefore, accurate predict ion of wave indeck uplift loads on deck with different structural geometries under various wave conditions are considerably important for guidance used in design. Several researches have addressed the problem of wave uplift loads on slabs near the still water level( Wang, 1970。 another is employed to diffuse the second reflection wave energy. Wave dissipating mild slopes are located at the two ends of the flume in order to mitigate the wave reflection. Waves are generated by a wave maker at one end of the flume.The deck of the exposed highpile jetty was constructed with a 1. 5 cm thick PVC plate. The width in the direction of wave propagation is B . The downstanding cross beam was 8 cm high and 4 cm wide. The distance between the crossbeams ( middlemiddle) was 24. 75 cm. The downstanding longitudinal beam was 5 cm high and 2 cm wide. The distance between the longitudinal beams ( middle middle) was 20 cm, as