【摘要】通州育才中學吳鋒2020-11復習30°、45°、60°角的正弦值、余弦值和正切值如下表:銳角a三角函數(shù)30°45°60°sinacosatana12223222123
2025-11-12 02:29
【摘要】第二十八章銳角三角函數(shù)解直角三角形及其應用第2課時應用舉例(一)數(shù)學九年級下冊配人教版易錯核心知識循環(huán)練1.(10分)如圖K28-2-5,在△ABC中,D,E分別是AB,AC的中點,若△ADE的面積是a,則四邊形BDEC的面積是
2025-06-18 05:07
【摘要】解直角三角形及其應用(第1課時)九年級下冊?本節(jié)課是在學習銳角三角函數(shù)之后,結合已學過的勾股定理和三角形內角和定理,研究解直角三角形的方法.本節(jié)課既幫助學生進一步理解銳角三角函數(shù)的概念,同時又為以后的應用舉例打下基礎.課件說明?學習目標:1.了解解直角三角形的意義和條件;2.能根據已知的兩個條件(至少有一個
2025-11-28 17:28
【摘要】應用舉例第1課時【基礎梳理】、俯角的概念(1)測量時,在視線與水平線所成的角中,視線在水平線_____的角叫做仰角.(2)視線在水平線_____的角叫做俯角(如圖所示).上方下方(1)把實際問題建立_________.(2)根據已知條件,選用適當?shù)腳____函數(shù)解直角三角形
2025-06-17 20:28
【摘要】應用舉例第2課時,仰角與俯角有何區(qū)別?如圖,有兩建筑物,在甲建筑物上從A到E點掛一長為30米的宣傳條幅,在乙建筑物的頂部D點測得條幅頂端A點的仰角為45°,條幅底端E點的俯角為30°.求甲、乙兩建筑物之間的水平距離BC.AEDCB甲乙、坡度有關的實際問題.、解
2025-06-19 12:16
【摘要】解直角三角形(2)在直角三角形中,除直角外,由已知兩元素求其余未知元素的過程叫解直角三角形.(1)三邊之間的關系:a2+b2=c2(勾股定理);(2)兩銳角之間的關系:∠A+∠B=90o;(3)邊角之間的關系:ACBabc
2025-11-12 04:10
【摘要】應用舉例第2課時,仰角與俯角有何區(qū)別?如圖,有兩建筑物,在甲建筑物上從A到E點掛一長為30米的宣傳條幅,在乙建筑物的頂部D點測得條幅頂端A點的仰角為45°,條幅底端E點的俯角為30°.求甲、乙兩建筑物之間的水平距離BC.AEDCB甲乙
2025-06-12 08:22
【摘要】在RtΔABC中,若∠C=900,問題1.兩銳角∠A與∠B有什么關系?答:∠A+∠B=900.問題2.三邊a、b、c的關系如何?答:a2+b2=c2.問題3.∠B與邊的關系是
2025-11-01 01:51
【摘要】解直角三角形(2)(2)兩銳角之間的關系∠A+∠B=90°(3)邊角之間的關系caAA???斜邊的對邊sincbBB???斜邊的對邊sincbAA???斜邊的鄰邊coscaBB???斜邊的鄰邊cosbaAAA????的鄰邊的對邊t
2025-06-20 03:56
【摘要】§解直角三角形(1)復習30°、45°、60°角的正弦值、余弦值和正切值如下表:銳角a三角函數(shù)30°45°60°sinacosatana1222322212332
2025-11-12 04:44
【摘要】第二十八章銳角三角函數(shù)解直角三角形及其應用(1)一、新課引入1、在三角形中共有幾個元素?2、直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B這五個元素間有哪些等量關系呢?一般地,直角三角形中,除直角外,共有5個元素,即3條邊和2個銳角(1)三邊之間的關系:a2+b
2025-06-20 00:24
【摘要】解直角三角形(1)要想使人安全地攀上斜靠在墻面上的梯子的頂端,梯子與地面所成的角α一般要滿足50°≤α≤75°.現(xiàn)有一個長6m的梯子.問:(1)使用這個梯子最高可以安全攀上多高的平房?(精確到)這個問題歸結為:在Rt△ABC中,已知∠A=75°,斜邊AB=6,求BC的長角α
2025-11-15 17:04
【摘要】第23章解直角三角形解直角三角形及其應用知識目標目標突破第23章解直角三角形總結反思第1課時解直角三角形知識目標第1課時解直角三角形通過對直角三角形六個元素的分析與探索,了解解直角三角形的定義,會解直角三角形.目標突破目標會解直角三角形例1[教材例
2025-06-16 17:09
2025-06-17 23:42