freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高考數(shù)學(xué)二輪專題復(fù)習(xí)教案―立體幾何-免費(fèi)閱讀

  

【正文】 ≤θ≤90176。除保留傳統(tǒng)的“四選一”的選擇題型外,還嘗試開(kāi)發(fā)了“多選填空”、“完型填空”、“構(gòu)造填空”等題型,并且這種命題形式正在不斷完善和翻新;解答題則設(shè)計(jì)成幾個(gè)小問(wèn)題,此類考題往往以多面體為依托,第一小問(wèn)考查線線、線面、面面的位置關(guān)系,后面幾問(wèn)考查空間角、空間距離、面積、體積等度量關(guān)系,其解題思路也都是“作——證——求”,強(qiáng)調(diào)作圖、證明和計(jì)算相結(jié)合。(3)平面與平面所成的角求法:①“一找二證三求”,找出這個(gè)二面角的平面角,然后再來(lái)證明我們找出來(lái)的這個(gè)角是我們要求的二面角的平面角,最后就通過(guò)解三角形來(lái)求。2.求距離:求距離的重點(diǎn)在點(diǎn)到平面的距離,直線到平面的距離和兩個(gè)平面的距離可以轉(zhuǎn)化成點(diǎn)到平面的距離,一個(gè)點(diǎn)到平面的距離也可以轉(zhuǎn)化成另外一個(gè)點(diǎn)到這個(gè)平面的距離?!久}規(guī)律】主要考查線線、面面垂直的判定與性質(zhì),多以選擇題和解答題形式出現(xiàn),解答題中多以證明線線垂直、線面垂直、面面垂直為主,屬中檔題??键c(diǎn)四:直線與平面、平面與平面平行的判定與性質(zhì)【內(nèi)容解讀】掌握直線與平面平行、平面與平面平行的判定與性質(zhì)定理,能用判定定理證明線面平行、面面平行,會(huì)用性質(zhì)定理解決線面平行、面面平行的問(wèn)題?!久}規(guī)律】主要考查平面的基本性質(zhì)、空間兩條直線的位置關(guān)系,多以選擇題、填空題為主,難度不大。(1) (2) 該四棱錐有兩個(gè)側(cè)面VAD. VBC是全等的等腰三角形,且BC邊上的高為 , 另兩個(gè)側(cè)面VAB. VCD也是全等的等腰三角形,AB邊上的高為 因此 俯視圖正(主)視圖側(cè)(左)視圖2322點(diǎn)評(píng):在課改地區(qū)的高考題中,求幾何體的表面積與體積的問(wèn)題經(jīng)常與三視圖的知識(shí)結(jié)合在一起,綜合考查。例(2008江蘇模擬)由大小相同的正方體木塊堆成的幾何體的三視圖如圖所示,則該幾何體中正方體木塊的個(gè)數(shù)是 .左視圖主視圖俯視圖解:以俯視圖為主,因?yàn)橹饕晥D左邊有兩層,表示俯視圖中左邊最多有兩個(gè)木塊,再看左視圖,可得木塊數(shù)如右圖所示,因此這個(gè)幾何體的正方體木塊數(shù)的個(gè)數(shù)為5個(gè)。②空間兩點(diǎn)的距離公式:.:若向量所在直線垂直于平面,則稱這個(gè)向量垂直于平面,記作,如果那么向量叫做平面的法向量. :①利用法向量求點(diǎn)到面的距離定理:如圖,設(shè)n是平面的法向量,AB是平面的一條射線,其中,則點(diǎn)B到平面的距離為.②.異面直線間的距離 (是兩異面直線,其公垂向量為,分別是上任一點(diǎn),為間的距離).③.點(diǎn)到平面的距離 (為平面的法向量,是經(jīng)過(guò)面的一條斜線,).④直線與平面所成角(為平面的法向量).⑤利用法向量求二面角的平面角定理:設(shè)分別是二面角中平面的法向量,則所成的角就是所求二面角的平面角或其補(bǔ)角大?。ǚ较蛳嗤?,則為補(bǔ)角,反方,則為其夾角).二面角的平面角或(,為平面,的法向量).三、考點(diǎn)剖析考點(diǎn)一:空間幾何體的結(jié)構(gòu)、三視圖、直觀圖【內(nèi)容解讀】了解柱、錐、臺(tái)、球體及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中的簡(jiǎn)單物體的結(jié)構(gòu)。且90176。.  (2)畫直觀圖時(shí)把它們畫成對(duì)應(yīng)的軸、軸和軸,它們相交于,并使45176。能畫出簡(jiǎn)單空間幾何體的三視圖,能識(shí)別上述三視圖所表示的立體模型,會(huì)用斜二測(cè)畫法畫出它們的直觀圖。點(diǎn)評(píng):從三視圖到確定幾何體,應(yīng)根據(jù)主視圖和俯視圖情況分析,再結(jié)合左視圖的情況定出幾何體,最后便可得出這個(gè)立體體組合的小正方體個(gè)數(shù)。例(2008山東)右圖是一個(gè)幾何體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積是( )A. B. C. D.解:從三視圖可以看出該幾何體是由一個(gè)球和一個(gè)圓柱組合而成的簡(jiǎn)單幾何體,其表面及為:,故選D。圖1例如圖1,在空間四邊形ABCD中,點(diǎn)E、H分別是邊AB、AD的中點(diǎn),F(xiàn)、G分別是邊BC、CD上的點(diǎn),且==,則( ?。ˋ)EF與GH互相平行(B)EF與GH異面(C)EF與GH的交點(diǎn)M可能在直線AC上,也可能不在直線AC上(D)EF與GH的交點(diǎn)M一定在直線AC上解:依題意,可得EH∥BD,F(xiàn)G∥BD,故EH∥FG,由公理2可知,E、F、G、H共面,因?yàn)镋H=BD,=,故EH≠FG,所以,EFGH是梯形,EF與GH必相交,設(shè)交點(diǎn)為M,因?yàn)辄c(diǎn)M在EF上,故點(diǎn)M在平面ACB上,同理,點(diǎn)M在平面ACD上,即點(diǎn)M是平面ACB與平面ACD的交點(diǎn),而AC是這兩個(gè)平面的交線,由公理3可知,點(diǎn)M一定在平面ACB與平面ACD的交線AC上。通過(guò)線面平行、面面平行的證明,培養(yǎng)學(xué)生空間觀念及及觀察、操作、實(shí)驗(yàn)、探索、合情推理的能力。例(2008廣東五校聯(lián)考)正方體ABCD—A1B1C1D1中O為正方形ABCD的中心,M為BB1的中點(diǎn),求證: (1)D1O//平面A1BC1。(1)兩條異面直線的距離求法:利用公式法。②向量法,先求兩個(gè)平面的法向量所成的角為α,那么這兩個(gè)平面所成的二面角的平面角為α或π-α。2.從內(nèi)容上來(lái)看,主要是:①考查直線和平面的各種位置關(guān)系的判定和性質(zhì),這類試題一般難度不大,多為選擇題和填空題;②計(jì)算角的問(wèn)題,試題中常見(jiàn)的是異面直線所成的角,直線與平面所成的角,平面與平面所成的二面角,這類試題有一定的難度和需要一定的解題技巧,通常要把它們轉(zhuǎn)化為相交直線所成的角;③求距離,試題中常見(jiàn)的是點(diǎn)與點(diǎn)之間的距離,點(diǎn)到直線的距離,點(diǎn)到平面的距離,直線與直線的距離,直線到平面的距離,要特別注意解決此類問(wèn)題的轉(zhuǎn)化方法;④簡(jiǎn)單的幾何體的側(cè)面積和表面積問(wèn)題,解此類問(wèn)題除特殊幾何體的現(xiàn)成的公式外,還可將側(cè)面展開(kāi),轉(zhuǎn)化為求平面圖形的面積問(wèn)題;⑤體積問(wèn)題,要注意解題技巧,如等積變換、割補(bǔ)思想的應(yīng)用。其解法是作垂線、找射影;二面角0176。其方法是平移法和補(bǔ)形
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1