【正文】
這種電動機(jī)沒有像串勵電動機(jī)那樣輕載高轉(zhuǎn)速的缺點(diǎn),但它在相當(dāng)?shù)某潭壬媳3种畡罘绞降膬?yōu)點(diǎn)。在串勵電動機(jī)中,電樞電流、電樞電勢和定子磁場磁通隨負(fù)載增加而增加(假設(shè)鐵芯不完全飽和)。在并勵和他勵電動機(jī)中磁場磁通近似為常數(shù),因此轉(zhuǎn)矩的增加必須要求電樞電流近似成比例增大,同時為允許增大的電流通過小的電樞電阻,要求反電勢稍有減少。并勵發(fā)電機(jī)電壓隨負(fù)載增加會有所下降,但在許多應(yīng)用場合,這并不防礙使用。當(dāng)需要在很大范圍內(nèi)控制電樞電壓時,他勵發(fā)電機(jī)常常用于反饋控制系統(tǒng)中。因為電樞電勢與磁通成正比,所以通常用恒定轉(zhuǎn)速下的電樞電勢來表示磁化曲線更為方便。從電刷端觀察到的電壓是電刷間所有串聯(lián)線圈中整流電壓的總和,在圖中由標(biāo)以的波線表示。)電刷上的電磁轉(zhuǎn)矩和速度電壓與磁通分布的空間波形無關(guān);為了方便起見,我們假設(shè)氣隙中仍然是正弦磁密波,這樣便可以從磁場分析著手求得轉(zhuǎn)矩。換向器一電刷的組合構(gòu)成機(jī)械整流器,它產(chǎn)生一直流電樞電壓和一在空間固定的電樞磁勢波形。在上述兩種情況下,參數(shù)都可折算到二次繞組,這樣可減小計算時間。對于這種簡化電路,一次側(cè)和折算后二次側(cè)阻抗可相加,得和需要指出的是,在此得到的等效電路僅僅適用于電網(wǎng)頻率下的正常運(yùn)行;一旦電壓變化率產(chǎn)生相當(dāng)大的電容電流時必須考慮電容效應(yīng)。在運(yùn)用這種理想轉(zhuǎn)換之前,內(nèi)部電壓和功率損耗已進(jìn)行了計算。類似地,與成比例的漏磁場的磁場儲能,求出后驗證與成正比。當(dāng)變換成,由于電動勢與匝數(shù)成正比,所以,與相等。從上述圖中,還應(yīng)得出兩點(diǎn):首先,為方便起見已假設(shè)匝數(shù)比為1,這樣可使。與一次側(cè)漏磁通一樣,的作用也用一個大體為常數(shù)的漏電感來表征。記住,近似等于的輸入容量也就近似等于輸出容量?,F(xiàn)在,我們要討論一種滯后功率因數(shù)。 =total number of conductors in armature winding。The Transformer on load﹠Introduction to DC MachinesThe Transformer on loadIt has been shown that a primary input voltage can be transformed to any desired opencircuit secondary voltage by a suitable choice of turn’s ratio. is available for circulating a load current impedance. For the moment, a lagging power factor will be considered. The secondary current and the resulting ampereturns will change the flux, tending to demagnetize the core, reduce and with it . Because the primary leakage impedance drop is so low, a small alteration to will cause an appreciable increase of primary current from to a new value of equal to . The extra primary current and ampereturns nearly cancel the whole of the secondary ampereturns. This being so, the mutual flux suffers only a slight modification and requires practically the same net ampereturns as on no load. The total primary ampereturns are increased by an amount necessary to neutralize the same amount of secondary ampereturns. In the vector equation,。 =number of parallel paths through winding。二次側(cè)電流及其總安匝將影響磁通,有一種對鐵芯產(chǎn)生去磁、減小和的趨向。一次側(cè)電流已增大,隨之與之成正比的一次側(cè)漏磁通也增大。要注意的是,由于它對互感磁通的作用,一次側(cè)漏磁通對于二次側(cè)端電壓的變化產(chǎn)生部分影響。其次,如果橫軸像通常取的話,那么向量圖是以為零時間參數(shù)的,圖中各物理量時間方向并不是該瞬時的。對于電流,由于對一次側(cè)作用的安匝數(shù)必須保持不變,因此,即。折算后的二次側(cè)。當(dāng)在電路中選擇了適當(dāng)?shù)膮?shù)時,在一、二次側(cè)兩端測得的變壓器運(yùn)行情況與在該電路相應(yīng)端所測得的請況是完全一致的。這對于高電壓和頻率超過100Hz的情形是很重要的。其電阻和電抗值可通過兩種簡單的輕載試驗獲得。電刷的放置應(yīng)使換向線圈也處于磁極中性區(qū),即兩磁極之間。轉(zhuǎn)矩可以用直軸每極氣隙磁通和電樞磁勢波的空間基波分量相互作用的結(jié)果來表示。當(dāng)每極有十幾個換向器片,波線的波動變得非常小,從電刷端觀察到的平均電壓等于線圈整流電壓平均值之和。任意轉(zhuǎn)速時,任一給定磁通下的電壓與轉(zhuǎn)速成正比,即 圖中表示只有一個勵磁繞組的磁化曲線,這條曲線可以很容易通過實驗方法得到,不需要任何設(shè)計步驟的知識。自勵發(fā)電機(jī)的勵磁繞組可以有三種不同的供電方式。復(fù)勵發(fā)電機(jī)的連接通常使串勵繞組的磁勢與并勵繞組磁勢相加,其優(yōu)點(diǎn)是通過串勵繞組的作用,每極磁通隨著負(fù)載增加,從而產(chǎn)生一個隨負(fù)載增加近似為常數(shù)的輸出電壓。由于反電勢決定于磁通和轉(zhuǎn)速,因此,轉(zhuǎn)速必須稍稍降低。因為磁通隨負(fù)載增大,所以為了維持外施電壓與反電勢之間的平衡,速度必須下降,此外,由于磁通增加,所以轉(zhuǎn)矩增大所引起的電樞電流的增大比并勵電動機(jī)中的要小。直流電機(jī)的應(yīng)用優(yōu)勢在于可接成并勵、串勵和復(fù)勵等各種勵磁方式,因而可提供多種性能各異的運(yùn)行特性。積復(fù)勵電動機(jī)具有界于并勵和串勵電動機(jī)之間的速度負(fù)載特性,轉(zhuǎn)速隨負(fù)載的降低取決于并勵磁場和串勵磁場的相對安匝數(shù)。通過改變外施電樞電壓,可以獲得很寬的調(diào)速范圍。電勢此時比端電壓小,電樞電流與發(fā)電機(jī)中的方向相反,且電磁轉(zhuǎn)矩與電樞旋轉(zhuǎn)方向相同。串勵發(fā)電機(jī)中的勵磁電流與負(fù)載電流相同,這樣,氣隙磁通和電壓隨負(fù)載變化很大,因此很少采用串勵發(fā)電機(jī)。勵磁電路中很小數(shù)量的功率可以控制電樞電路中相對很大數(shù)量的功率,也就是說發(fā)電機(jī)是一種功率放大器。這種假設(shè)有必要在后述部分加以驗證,屆時飽和效應(yīng)會深入研究。將繞組分散在幾個槽中的效果可用圖形表示,圖中每一條整流的正弦波形是一個線圈產(chǎn)生的電壓,換向線圈邊處于磁中性區(qū)。電角度,這是因為元件的末端形狀構(gòu)成圖示結(jié)果與換向器相連。我們知道,每個旋轉(zhuǎn)的電樞繞組中產(chǎn)生的交流電壓,經(jīng)由一與電樞連接的旋轉(zhuǎn)的換向器和靜止的電刷,在電樞繞組出線端轉(zhuǎn)換成直流電壓。在這種電路中有時可省略激磁支路,這樣電路簡化為一臺產(chǎn)生恒值電壓(實際上等于)并帶有阻抗(實際上等于)的發(fā)電機(jī)。對一個具體問題可否允許有細(xì)微差別的回答取決于是否允許這種誤差的存在。的通常情形時的等效電路,它除了為了考慮鐵耗而引入了,且為了將折算回而在二次側(cè)兩端引入了一理想的無損耗轉(zhuǎn)換外,其他方面是一樣的。必須等于,而事實上確實簡化成了。因此,二次側(cè)繞組可用任意個在一次側(cè)產(chǎn)生相同匝數(shù)的等效繞組是方便的。此時的幅值已經(jīng)增大,但由于與是向量合成,因此一次側(cè)電流仍然是增大的。這樣,二次側(cè)端電壓降至,它可被看成兩個分量,即,或者向量形式。滿載時,電流只約占滿載電流的5%,因而近似等于??捎糜诋a(chǎn)生負(fù)載電流,該電流的幅值和功率因數(shù)將由而次側(cè)電路的阻抗決定。 for convenience we shall continue to assume a sinusoidal fluxdensity wave in the air gap. The torque can then be found from the magnetic field viewpoint. The torque can be expressed in terms of the interaction of the directaxis airgap flux per pole and the spacefundamental ponent of the armature . wave . With the brushes in the quadrature axis, the angle between these fields is 90 electrical degrees, and its sine equals unity. For a P pole machine In which the minus sign has been dropped because the positive direction of the torque can be determined from physical reasoning. The space fundamental of the saw tooth armature . wave is 8/ times its peak. Substitution in above equation then gives Where =current in external armature circuit。 alternatively, . At full load, the current is only about 5% of the fullload current and so is nearly equal to. Because in mind that , the input kVA which is approximately is also approximately equal to the output kVA, .The physical current has increased, and with in the primary leakage flux to which it is proportional. The total flux linking the primary, is shown unchanged because the total back ., ()is still equal and opposite to . However, there has been a redistribution of flux and the mutual ponent has fallen due to the increase of with . Although the change is small, the secondary demand could not be met without a mutual flux and . alteration to permit primary current to change. The net flux linking the secondary winding has been further reduced by the establishment of secondary leakage flux due to , and this opposes . Although and are indicated separately, they bine to one resultant in the core which will be downwards at the instant shown. Thus the secondary terminal voltage is reduced to which can be considered in two ponents, . or vectorially . As for the primary, is responsible for a substantially constant secondary leakage inductance . It will be noticed that the primary leakage flux is responsible for part of the change in the secondary terminal voltage due to its effects on