【正文】
最后謝謝各位同學和朋友們在編寫程序上給予我的大力幫助! 石家莊鐵道大學四方學院畢業(yè)設(shè)計 32 附 錄 附錄 A 外文資料 Car license plates recognition system Along with the increase in the number of countries around the world, city car traffic increasingly attention on how to effectively L traffic management, has bee more and more governments and the relevant departments have the focus. To solve this problem, we use the advanced science and technology, we have developed the developed various traffic surveillance, management system, these systems are usually include vehicle detection device, through these devices on passing vehicles conduct test on traffic data extraction, in order to achieve monitoring, management and directing traffic purpose car licence plate recognition technology is one of the important vehicle detection system in traffic link monitoring and control, play an important role, has a wide variety of applications, such as automatic charge system, no parking capture to expend, stolen vehicle searches, parking lot vehicle management, special department vehicle access control, etc. Meanwhile, car licence plate recognition method can also be used to other detection and identification field so car licence to identify the problem has bee a modern traffic engineering field research hotspot and focus of one problem. Car license plates recognition system is for specific goals licence plates special puter vision system, is the puter vision and pattern recognition technology application in intelligent transportation one of the major issues, it can be used widely in the traffic flow testing, traffic control and induction, airports, ports, the vehicle management, no parking fee, running red lights automatic monitoring peccancy vehicles and vehicle safety guard against theft and other fields, and has a broad application prospect. Car license plates recognition system is an important part in intelligent transportation system, is a hitech highway traffic monitoring management system one of the main functional modules. It in traditional traffic monitoring technology is introduced on the basis of digital camera, technology and puter information management technology, USES the advanced image processing, pattern recognition and artificial intelligence technology, through to the vehicle image collection and processing of the digital information, obtain 石家莊鐵道大學四方學院畢業(yè)設(shè)計 33 vehicles, so as to achieve higher intelligent management level. This system is the tsinghua university electrical engineering department, intelligent graphic information processing laboratory research and developed, it utilizes the only vehicle license plate is marking the identity to intelligent identification and ideological concepts, involving the statistical vehicle image capture, processing, understanding and recording techniques. 1. The system working principle: A plete license plate identification process generally includes the following three main steps: first, through the camera will contain car licence information car image filmed, converted to digital image, the deposit in the puter used to deal with, and some necessary pretreatment work。 石家莊鐵道大學四方學院畢業(yè)設(shè)計 28 自動識別 用模板庫中的字符圖像矩陣與待識字符圖像矩陣作減法,求最小誤差,即其相似度,將最相似的模板庫中的字符圖像矩陣的代碼作為識別結(jié)果,并顯示出來。 字符識別方法簡介 ( 1) 模板匹配法 這個方法是把輸入的字符直接和標準的字符原型進行比較,找到與之最匹配的模板。 所謂大小歸一化,就是對不同大小的字符做變換,使之成為同一尺寸大小的字符。)。 SegBw2 = imresize(SegBw1,[32 16])。 markcol6(findmax)=0。 markcol2(n1)=markcol(l)markcol(l1)。 %字符上升點 markcol1(l)=count1。另外由于我國車牌的標準化,車牌上的第二個字符與第三個字符的距離大于其他字符及邊框的距離,由此采用在垂直投影中找最大的峰中心距離的方法,可以確定車牌上的第二個字符的中心位置,而第二大的峰中心距離即可以確定為車牌字符的最大寬度,即定為車牌字符寬度。,int2str(maxhight)],39。 %字符高度 (rowbotrowtop+1) 計算車牌垂直投影 去水平(上下)邊框后,用如下 MATLAB 程序?qū)崿F(xiàn)垂直投影計算,投影如圖 44所示: histcol=sum(sbw2)。 %下降點 markrow4(k)=markrow3(k)markrow(k)。 石家莊鐵道大學四方學院畢業(yè)設(shè)計 21 end count1=0。 minrow=min(histrow)。 title(39?,F(xiàn)采用以下程序求出車牌 二值圖像 的垂直投影圖和水平投影圖,如圖 41 所示: histcol1=sum(sbw1)。 ( 1) 首先對圖像每個區(qū)域進行標記,如圖 311 所示。 title(39。 figure,imshow(bg3)。,[5,19]))。 grd=edge(bw2,39。將圖像二值化,石家莊鐵道大學四方學院畢業(yè)設(shè)計 13 如圖 36: [m,n]=size(i)。 ( 1)對原始圖像進行開操作得到圖像背景圖像,如圖 34 所示: s=strel(39。最后用二值化產(chǎn)生閉合的連通的輪廓,消除所有內(nèi)部點。一階導數(shù)的局部最大值對應二階導數(shù)的零交叉點,這樣通過找圖像強度的二階導數(shù)餓的零交叉點就能找到精確邊緣點。當圖像灰一種簡單而廣泛應用的方法。 閾值化技術(shù) 基于閾值的車牌定位分割方法是圖像分割中十分古老而又簡單有效的常用方法。這四種牌照的長度均為 45cm,寬 15cm,共 8 個字符。 石家莊鐵道大學四方學院畢業(yè)設(shè)計 9 圖 33 灰度化后的圖像 中值濾波 中值濾波是一種非線性濾波處理技術(shù),能有效地抑制圖像中的某些噪聲,它基于圖像這樣一種特性:噪聲往往以孤立點的形式出現(xiàn),這些點對應的像素數(shù)很少,而圖像是由許多像素數(shù)較多、面積較大的小塊組成。 figure, imshow(Scolor), title(39。 首先應該把 256 色彩色圖像轉(zhuǎn)換為灰度圖像。 車牌字符分割 經(jīng)過上面一系列預處理后,得到的是一條上下邊緣緊貼字符的水平二值圖像,其中,車牌的背景像素為白色,用 1 表示 。 灰度拉伸 若有一幅圖,由于拍攝光照不足,使得整幅圖偏暗(例如,灰度范圍從 055),或者拍攝時光照過強,使得整幅圖偏亮(灰度范圍從 200255),這些情況都是屬于低石家莊鐵道大學四方學院畢業(yè)設(shè)計 6 對比度,即灰度都擠在一起,沒有拉開。 閾值處理的操作過程是先由用戶指定或通過算法生成一個閾值,如果圖像中某中像素的灰度值小于該閾值,則將該像素的灰度值設(shè)置為 0 或 255,否則灰度值設(shè)置為255 或 0[9]。在數(shù)字圖像處理中,二值圖像占有非常重要的地位。 DTD? ( 21) 要求 D 和 D’都在圖像的灰度范圍之內(nèi)。汽車圖像原始圖像 圖像預處理 邊緣提取 車牌定位 字符分割 字符識別 石家莊鐵道大學四方學院畢業(yè)設(shè)計 3 預處理 部分完成對原始汽車圖像進行必要的灰度化、去噪聲、圖像增強處理,車牌定位與提取部分利用邊緣檢測方法對圖像進行定位與提取,然后利用水平