【正文】
但對于任意給定的生產(chǎn)過程中對數(shù)據(jù)僅限于一個樣本的過程率 。 請注意 ,這兩個常數(shù)小于平均數(shù)。這說明 , 由于負(fù)荷 的增加, 有效 的 減少了加工 時間 ,從而控制了電量的消耗 。其中 3號刀具的切削功率最大,但是主軸電機(jī)和主軸驅(qū)動器上的負(fù)載卻比用 2號刀具在其余條件同等,將進(jìn)給速率調(diào)大兩倍或更大的倍率還要大。經(jīng)測量刀具 2所用的切削參數(shù)的平均空切切削功率為 1510W,所以這是要從總的切削功率中減去的。 2. 兩齒的錫涂層的硬質(zhì)合金立銑刀。 有關(guān)參數(shù)對材料去除率 (.)在 日本森精機(jī) NV1500不同而選擇合適的常規(guī)工具。 研究發(fā)現(xiàn),高皮重機(jī)床的能耗主要依賴于處理時間方面,受制于 部分幾何、工具的路徑 、和 材料去除率 。生命周期評估的缺點(diǎn)是這一方法需要獲取過程細(xì)節(jié)的數(shù)據(jù) ,這是一個耗時而且資源密集型的方法。因此,為了研究切削鋼件的能耗情況,本次研究通過研究了機(jī)床 切割鋁和聚碳酸酯的工件 所需要消耗的 功率進(jìn) 來進(jìn)行了比較。一臺微細(xì)加工中心在不同的材料去除率下切削低碳鋼所消耗的功率是通過機(jī)床的 比能來確定的。 Schlosser, R. (2020): Strategies for Minimum Energy Operation for Precision Machining, in: Proceedings of the Machine Tool Technologies Research Foundation (MTTRF2020) 2020 Annual Meeting, pp. 4750, Shanghai, China. [6] Inamasu, Y.。 Pavanaskar, S.。 Horvath, A.。 Energy Consumption Reduction。 Helu, M.。 Jayanathan, S.。 T246。 Sekulic, . (2020): Minimum Exergy Requirements for the Manufacturing of Carbon Nanotubes, IEEE International Symposium on Sustainable Systems and Technology (ISSST2020), Washington, . [8] Behrendt, T. (2020): Development of a SimulationBased Application to Derive and Estimate Potentials of Efficiency Measures for Diverse Machine Tool Processes, Diploma Thesis, Braunschweig University of Technology. [9] Ashby, . (2020): Materials and the Environment: Ecoinformed Material Choice, ButterworthHeinemann, Burlington, MA, USA. 11 加州大學(xué)伯克利分校 制造與可持續(xù)性發(fā)展實驗室 題名: 銑削機(jī)床使用的能源消耗特性及減縮策略 作者: 迪亞茲 利戴爾賽門,多費(fèi)爾德 處于使用階段的銑床被發(fā)現(xiàn)其二氧化碳的排放量占了其生命周期的 60%到90%[1]。切削能耗是用于去除材料的額外能耗。雖然提高材料去除率減少了加工時間,但同時增加了主 軸電機(jī)和主軸驅(qū)動上的負(fù)載,提高了能耗。 所以在接下來的實驗 雖然 刀具類型改為保持推薦工藝參數(shù) ,但加工能耗降低了 。 為了避免過多的刀具磨損和破損,每齒的切削深度保持在 。因此,從能耗成本來考慮經(jīng)營者還是選擇提高材料去除率來降低能源消耗。主軸轉(zhuǎn)速、緊急備率各不相同,盡管這樣會造成機(jī)床在進(jìn)行切削深度實驗時負(fù)載的不同( 見表 2為總結(jié)工藝條件 ) 道具類型 主軸轉(zhuǎn)速 進(jìn)給速率 排屑量 材料去除率 轉(zhuǎn) /每分鐘 毫米 /每分鐘 毫米 /每齒 立方毫米 /每秒 ( 1) 25003200 254325 40250 ( 2) 32504160 330425 50330 表 2:切削深度實驗工藝參數(shù) 圖 3為精森 NV1500 DCG 立式加工中心用兩齒的錫涂層硬質(zhì)合金立銑刀(刀具 2)在不同的材料去除率是的所需功率。因此 ,能量損耗可以用下式表達(dá): tte ppp a irc uta v g ????? *)(* (1) 兩個方案將做比較。這是有著高的待機(jī)功率的、大的工作卷的機(jī)床的個例。但是,在給定的工作體積、主軸轉(zhuǎn)速、工作臺進(jìn)給這些被機(jī)床所約束,同時,機(jī)床的主體框架無法提供無限大的極限載荷,主軸電機(jī)將損壞,一切辦法永遠(yuǎn)都不可能使得材料去除率接近無限。 ???? ??? 12 (6) 所以,如果 β比α小,則 e2永遠(yuǎn)比 e1小。 由由于機(jī)床內(nèi)部的冷卻單元 的影響電能消耗呈現(xiàn)了一些變化,平均電能消耗 P avg 將在此處用到。測量在切削深度為 4和 8mm 時機(jī)床的切削功率。 切削寬度為 時的功率幾乎是寬度為 1mm 時的功率的 9倍。切削深度以 1毫米作為增量在 1到 7毫米之間變化,此外,還有一個 的切口。同時, [6]進(jìn)行了比較平銑、立銑、鉆孔銑等銑削加工在提高切削速度后的能耗、加工成本和刀具磨損的實驗。三軸聯(lián)動加工中心的材料去除率可以由進(jìn)給速率、切削寬度和切削深度控制。此處介紹的這個策略是為一個特定的產(chǎn)品提供一個更快的生產(chǎn)能耗評估的方法。所有這些產(chǎn)品所消耗的資源,特別是能源是以電能或燃料為主要形式。 12 銑削機(jī)床使用的能源消耗特性及 減縮策略 南希 Noguchi, K. (2020): The Effects of Cutting Condition on Power Consumption of Machine Tools, in: Proceedings of the 4th CIRP International Conference on High Performance Cutting (HPC2020), Vol. 1, pp. 267270, Gifu, Japan. [7] Gutowski, .。 Helu, M.。 Helu, M.。Specific Energy Characterization 1 INTRODUCTION A product undergoes three lifecycle stages: manufacturing, use and endoflife. Consumer products whose environmental impact is dominated by the use phase include light fixtures, puters, refrigerators, and vehicles, in general products that are used extensively during their functional life. All the while these products consume resources, in particular energy in the form of electricity or fuel. The machine tool is one such product. The use phase of milling machine tools has been found to prise between 60 and 90% of CO2equivalent emissions during its life cycle [1]. This study presents a method for predicting the electrical energy consumed in manufacturing a product for the purpose of reducing its environmental impact. In conducting a life cycle assessment, product designers may choose to opt for a process, economic inputoutput (EIO), or hybrid approach. The drawback of the process LCA, though, is that because this method entails acquiring processspecific data it is time consuming and therefore resource intensive. An alternative to measuring the machine tool’ s electrical energy consumption directly, for example, is to use aggregate data as is done with EIOLCA [2]. An EIOLCA, therefore, is not specific to the design of a particular product. The strategies presented herein provide a method for more quickly generating manufacturing energy consumption estimates for a particular product. Cutting load profile As described by Diaz et al. in [3] the power demand of a machine tool is prised of cutting, variable, and constant power ponents. The cutting power is the additional power drawn for the removal of material. The machine tool used in this analysis, the 2 Mori Seiki NV1500 DCG, is a micromachining center with a relatively low standby power demand when pared to large machining centers. Therefore, the cutting power can prise a large portion of the machine tool’ s total power demand. Energy consumption for high tare machine tools was found to be primarily dependent on the processing time of the part, which is dictated by the part geometry, tool path, and material removal rate. One such method for optimizing the tool path for minimum cycle time was presented in [4]. This paper is concerned with the effect of the material removal rate on energy consumption. The material removal rate for a 3axis machining center can be varied by changing the feed rate, width of cut, or depth of cut. Since increasing the feed rate was found to have dire consequences on the cutting tool life [5], the experiments conducted herein varied material removal rate through width of cut and depth of cut experiments for the purpose of analyzing the material removal rate’ s effect on cutting power and more importantly, energy consumption. Although increases in the material removal rate translate to faster machining times, the loads on the spindle motor and axis d