【正文】
F. Central chiller systems are constructed similarly to the multiplex parallel racks, using multiple parallel pressors for capacity control. The use of highefficiency pressors, such as reciprocating or scroll units is highly desirable to help offset some of the added energy consumption associated with brine pumping. Because of the location of the evaporator on the chiller skid, the pressors for the secondary loop system are considered closecoupled to the evaporator. The pressure drop and return gas heat gain are minimized in this configuration. Both these factors help to reduce pressor energy consumption. These chiller systems can also be equipped with hot brine defrost where brine is heated by subcooling of the chiller refrigerant. Heat rejection can be acplished with aircooled, watercooled, or evaporatively cooled condensers. Lowest condensing temperatures are achieved with evaporative condensers, which help reduce energy consumption, particularly when the mini mum condensing temperature is set as low as possible. The system refrigerant charge will be on the order of 500 to 700 lb with either aircooled or evaporative condensers and 200 lb when watercooled condensers and a fluid loop are used. Like distributed refrigeration, the use of evaporative heat rejection for the fluid loop is remended to reduce energy consumption. 17 3. LOWCHARGE MULTIPLEX REFRIGERATION Several refrigeration system manufacturers now offer control systems for condensers that limit the amount of refrigerant charge needed for the operation of multiplex refrigeration. Figure 5 shows an example of such a control approach. A control valve is used to operate a bypass from the condenser liquid line in order to maintain a constant differential between the high and low pressures of the system. The refrigerant liquid charge is limited to that needed to supply all display case evaporators. No added liquid is needed for the receiver, which is included in the system, primarily for pumpdown during servicing. All refrigerant liquid bypassed is expanded and evaporated through heat exchange with the discharge manifold. The resulting vapor is piped to the suction manifold for repression and return to the condenser. The use of this control approach reduces the charge needed by the refrigeration system by approximately onethird. The control of the liquid charge by this method offers some energysaving potential because it has been found that pressors can be operated at very low head pressures when this control method is employed. The minimum condensing temperature values suggested for this lowcharge system are 40176。F. If significant portions of the refrigeration load can be addressed by higher temperature loops, energy savings can be obtained. For example, refrigeration loads at 10176。 Secondary loop。 [2]Walker,。這兩個網(wǎng)點目前正在監(jiān)測中。在此配置中,分布式和二次回路系統(tǒng),相比那些具有熱回收的復(fù)合式制冷系統(tǒng),均呈現(xiàn)出明顯高的節(jié)能。 在蒸發(fā)情況下出現(xiàn)在自我封閉系統(tǒng)的壓縮機緊密耦合的情況,降低了壓縮機吸入口處的壓降,也最大限度地減少了吸入氣體的熱量增益。有了一個固定的壓縮能力,獨立系統(tǒng)的冷凝溫度必須維持一個有限的范圍內(nèi)以確保其能力不會大大超過所需制冷負荷。這需要大大減少蒸發(fā)冷凝風(fēng)機功率達到預(yù)期的低水頭壓力值(【 Walker】 1997 年)。所有的制冷劑液體,通過多種放電形式的熱交換擴大和冷凝。通過蒸發(fā)冷凝器實現(xiàn)最低冷凝溫度,這有助于降低能源消耗,特別是當(dāng)冷凝溫度被設(shè)置得越低時越好。對于這里給出的分析,被認為是四個回路,分別在 20℉, 10℉, 20℉和 30℉的環(huán)境溫度下運行。在冷水機 組中,鹽水是被冷卻介質(zhì),然后通過陳列柜中的散發(fā)線圈,它應(yīng)用于寒冷的空氣中。較短的吸力線也意味著更少的熱量增益到返回氣中是可行的。滾動式壓縮機的無閥功能允許它們在明顯低的冷凝溫度下運行。分析內(nèi)容擴大到包括低能耗復(fù)合式和高性能的獨立系統(tǒng)。例如低能耗制冷劑系統(tǒng)包括分布式,二次循環(huán)和高性能獨立的配置。 2 圖 1,一個典型的超市冷藏布局 圖 2,多重制冷系統(tǒng) 圖 2 顯示了多重制冷系統(tǒng)的主要成分,這是在超市最常用的組態(tài)。一個銷售面積約 40000 英尺的典型的超市,每年總儲存能量消耗約 2 萬千瓦時。 沃克博士 ASHRAE 成員 范 D 可以通過水源熱泵機組,通過設(shè)在該散熱循環(huán)熱泵可利用的存儲空間來實現(xiàn)制冷、散熱,以不增加冷凝溫度制冷來整合暖通空調(diào)制冷和存儲操作。 圖 1 顯示了一家超市展示柜典型的冷藏布局。一個典型的超市將需要3000 到 5000 磅的制冷劑。這個制冷調(diào)查,包括分析分布式和二次循環(huán)制冷系統(tǒng)和多了一項能源的 TEWI 復(fù)合式系統(tǒng)。 制冷系統(tǒng)采用的分布式滾動壓縮機是由于這種類型的壓縮機具有低噪音和振動水平。這種特殊的方法尚未得到最優(yōu)化,壓縮機制造商并沒有為這部分提供分析。這種能量罰款的一大部分可以消除,如果一個蒸發(fā)閉式冷卻塔是應(yīng)用在一個區(qū)域,在接近該區(qū)域周圍環(huán)境的濕球溫度條件下熱排斥反應(yīng)可以發(fā)生。通常情況下,應(yīng)使用兩個循環(huán)溫度,例如20℉和 +20℉。這兩個因素 6 有助于減少壓縮機的能量消耗??刂崎y是用于操作冷凝器的旁路,使液體線之 間保持恒定,用以鑒別該系統(tǒng)的高低壓力。 結(jié)果表明,風(fēng)扇控制策略對于以實現(xiàn)能源儲蓄為這個特定系統(tǒng)的目的是非常關(guān)鍵的,因為消耗所有壓縮機的能量儲存以維持低水頭壓力,這對于冷凝器風(fēng)機是可能的。然而直到最近,渦旋壓縮機只能夠在一個垂直的配置中,這不適合于展示柜的位置。圖 6 顯示了容量控制和壓縮機電力需求之間的關(guān)系。 這家超市制冷系統(tǒng) 表明最低 TEWI 是采用乙二醇循環(huán)和蒸發(fā)散熱的分布式壓縮機和二次回路系統(tǒng)。這家超市被設(shè)置成為了制冷和熱泵系統(tǒng)收集能源和運營數(shù)據(jù)。 本文摘譯自 ASHRAE STD CH 03 11 2020。 [4]Walker,。F minimum condensing temperature was not considered here because of the necessity to have two glycol loops, which may or may not be practical for actual installations. Minimum condensing temperature was, therefore, limited to 60176。F, 10176。F and 60176。F, rather than including this portion of the load with the –20176。F for mediumtemperature refrigeration and 40176。《關(guān)于北方氣候的蒸發(fā)冷凝器的發(fā)展》。 致謝 筆者要感謝由美國能源部的 Esher Kweller 博士提供的指引和支持。 由于低能耗制冷系統(tǒng)有能源和成本的節(jié)約潛力,在本次調(diào)查美國能源部已加大努力,包括對分散式制冷系統(tǒng)采用乙二醇循環(huán)和暖通空調(diào)采用 WSHP 循環(huán)的現(xiàn)場測試。相比于復(fù)合式基線系統(tǒng),一個高性能的自閉系統(tǒng)具有較高的能量消耗。 圖 6,容量控制和壓縮機電力需求之間的關(guān)系 典型的渦旋壓縮機包括卸載容量控制以保持吸氣壓力的設(shè)定值。先前有幾個問題阻礙了這種配置的實施。 圖 5,低能耗系統(tǒng)的管路圖 液體的電荷控制可以用這種方法提供一些節(jié)能潛力,因為已經(jīng)發(fā)現(xiàn)當(dāng)應(yīng)用這種控制方法時,壓縮機可在非常低的水頭壓力下運行。 幾種制冷系統(tǒng)制造商現(xiàn)在提供冷凝器控制系統(tǒng),限制多重制冷機的運行所需制冷劑額定量。由于蒸發(fā)器位于冷水機組上,為二次回路系統(tǒng)的壓縮機被認為是緊耦合的蒸發(fā)器。鹽水的使用,比如那些鉀酸鹽,高的熱容量和低的粘度在低溫下是可取的。當(dāng)水冷式冷凝器被應(yīng)用時,從水冷式冷凝器散熱,經(jīng)由乙二醇循環(huán)和流體冷卻器完成,水冷式冷凝器通常位于超市的屋頂。因此,冷凝溫度最低為 60 華氏度,僅限于本評估。 圖 3,分布式制冷系統(tǒng) 4 多級壓縮機位于柜子上或放置在附近的銷售層。如