【正文】
最后,存在于 GDF 數(shù)據(jù)中的 POI數(shù)據(jù)被使用到可見性分析的擴(kuò)展是非常有趣的。不同種類事物的數(shù)據(jù)預(yù)處理方法 和當(dāng)不同數(shù)據(jù)挖掘運(yùn)算法則被提供到相同數(shù)據(jù)時產(chǎn)生的問題必須被調(diào)查。所以,在本文中我們將考慮把 GIS 數(shù)據(jù)庫和激光掃描 DSMs 聯(lián)合起來在一個圖標(biāo)層上,不明確地重建物體的三維空間的形狀而當(dāng)做分開實(shí)體。 大 多數(shù)的系統(tǒng)能夠測量不只有高度 , 也有反射系 數(shù) , 和首先 ,最后的或多樣的回行脈沖 ,他們允許分開樹形天篷和地面。因此,路標(biāo)技術(shù)的整合沒有在現(xiàn)在的汽車導(dǎo)航系統(tǒng)中造成障礙,這些主要問題是來自那些用自動或半自動方法的指令中的。在那里,它被轉(zhuǎn)換到最后在地圖激光中英文資料 唱碟或數(shù)字化視頻光上被發(fā)現(xiàn)的專有格式。 圖 2 顯示沿著圖 1 的軌道所有的那些區(qū)域的一種情況。 然而 ,道路標(biāo)記被一個路線排定指令選擇,而且一定在整個調(diào)遣期間是看得見的 。 我們依照下列各項(xiàng)的方式,對于任何的觀察點(diǎn)的位置和觀看方向定義給予的水平線和垂直的一個虛擬的照相機(jī)的外部方位看角。 然而,傳送這些信息的原始概念并沒有得到較大的改善。中英文資料 中文 3656 字 出處: International archives of photogrammetry remote sensing and spatial information sciences, 2020, 34(3/W8): 131138 使用 GIS 數(shù)據(jù)庫和激光掃描技術(shù)為汽車導(dǎo)航系統(tǒng)獲取路標(biāo) C Brenner, B Elias 摘要 現(xiàn)在的汽車導(dǎo)航系統(tǒng)以地圖,圖形,以及聲音的形式提供給用戶行駛中的信息,然而他們還遠(yuǎn)遠(yuǎn)不能支持基于道路標(biāo)記的導(dǎo)航,而這也是對我們來說更簡單的導(dǎo)航理念,并且這也在不久要實(shí)現(xiàn)的個人導(dǎo)航系統(tǒng)中占據(jù)重要的位置。聲音的導(dǎo)航仍然用相對小的提示:(例如 現(xiàn)在向右轉(zhuǎn)),這 只涉及到了道路分布的屬性。 這個虛擬的照相機(jī)表示為駕駛者的視野。這可能沿著對應(yīng)的調(diào)遣定義的軌道追蹤物體的可見性。當(dāng)物體出現(xiàn)的時候 , 能產(chǎn)生典型的有遮掩的曲線 , 變化比較大和最后消失的就如被途徑人所觀察。數(shù)據(jù)必須從一種描述形式轉(zhuǎn)換成被汽車導(dǎo)航系統(tǒng)支援的另一種被特殊化的形式,這轉(zhuǎn)變是高度非凡的。 4 激光掃描和城市模型 在二十世紀(jì)九十年代,靠空氣傳播的激光掃描作為獲得表面的 模型的新方法變得可用。 (Kraus 和 Rieger,1999) 主要的問題是怎樣從激光掃描數(shù)據(jù)組中獲取關(guān)于人造結(jié)構(gòu)的符號信息,可能和天空的或陸地的圖像聯(lián)合。圖3 展示了一個數(shù)據(jù)資源被用過的例子,來自正在激光掃描的 DSM,使有規(guī)則到 1米的格子,街道的幾何形狀用從一個 GDF 數(shù)據(jù)組合的中心線表示,而建筑物的輪廓用從地籍圖上獲得的中心線表示。萃取的路標(biāo)的可靠性不得不通過質(zhì)量測試來決定,目的是為了避免不明確的目標(biāo)誤導(dǎo)用戶。 中英文資料 附件 2: 外文原文 EXTRACTING LANDMARKS FOR CAR NAVIGATION SYSTEMS USING EXISTING GIS DATABASES AND LASER SCANNING ABSTRACT Today’s car navigation systems provide driving instructions in the form of maps, pictograms, and spoken language. However, they are so far not able to support landmarkbased navigation, which is the most natural navigation concept for humans and which also plays an important role for uping personal navigation systems. In order to provide such a navigation, the first step is to identify appropriate landmarks – a task that seems to be rather easy at first sight but turns out to be quite pretentious considering the challenge to deliver such information for databases covering huge areas of Europe, Northern America and Japan. In this paper, we show approaches to extract landmarks from existing GIS databases. Since these databases in general do not contain information on building heights and visibility, we show how this can be derived from laser scanning data. 1 INTRODUCTION Modern car navigation systems have been introduced in 1995 in upper class cars and are now available for practically any model. They are relatively plex and mature systems able to provide route guidance in form of digital maps, driving direction pictograms,and spoken language driving instructions (Zhao, 1997).Looking back to the first beginnings in the early 1980s, many nontrivial problems have been solved such as absolute positioning, provision of huge navigable maps, fast routing and reliable route guidance. However, the original concept of delivering the instructions has not changed very much. Still, spoken language instructions use a relatively small set of mands (like ’turn right now’), which only refer to properties of the street work. This is not optimal, since i) features of the street work typically are not visible from a greater distance due to the low driver position and small observing angle, and ii) the most natural form of navigation for humans is the navigation by landmarks, . the provision of a number of recognizable and memorizable views along the route. Obviously, the introduction of buildings as landmarks together with corresponding 中英文資料 spoken instructions (suc