freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

綏化市八年級數(shù)學試卷易錯易錯壓軸勾股定理選擇題精選及答案(4)-免費閱讀

2025-04-05 01:33 上一頁面

下一頁面
  

【正文】 ∴BD⊥CE,故②正確;③∵△ABC為等腰直角三角形,∴∠ABC=∠ACB=45176。等量代換得到∠ACE+∠DBC=45176。∴該矩形的面積為=(a+x)(b+x)=(3+x)(4+x)=x2+7x+12=24.故答案為B.【點睛】本題考查了勾股定理的證明以及運用和一元二次方程的運用,求出小正方形的邊長是解題的關鍵.13.D解析:D【分析】將容器側(cè)面展開,建立A關于EG的對稱點A′,根據(jù)兩點之間線段最短可知A′B的長度即為最短路徑,由勾股定理求出A′D即圓柱底面周長的一半,由此即可解題.【詳解】解:如圖,將圓柱展開,為上底面圓周長的一半,作關于的對稱點,連接交于,則螞蟻吃到蜂蜜需爬行的最短路徑為的長,即,延長,過作于,中,由勾股定理得:,該圓柱底面周長為:,故選D.【點睛】本題考查了平面展開最短路徑問題,將圖形展開,利用軸對稱的性質(zhì)和勾股定理進行計算是解題的關鍵.同時也考查了同學們的創(chuàng)造性思維能力.14.A解析:A【解析】A.處,所以AD=A39。AB’=AB,∵△ADE是等邊三角形,∴∠DAE=60176。=45176?!螩BE+∠ACB=90176。)A.20 B.24 C. D.13.如圖,透明的圓柱形玻璃容器(容器厚度忽略不計)的高為,在容器內(nèi)壁離容器底部的點處有一滴蜂蜜,此時一只螞蟻正好在容器外壁,位于離容器上沿的點處,若螞蟻吃到蜂蜜需爬行的最短路徑為,則該圓柱底面周長為( )A. B. C. D.14.下列四組數(shù)中不能構(gòu)成直角三角形的一組是( )A.1,2, B.3,5,4 C.5,12,13 D.3,2,15.如圖,在△ABC中,AB=8,BC=10,AC=6,則BC邊上的高AD為(  ?。〢.8 B.9 C. D.1016.如圖,正方體的棱長為4cm,A是正方體的一個頂點,B是側(cè)面正方形對角線的交點.一只螞蟻在正方體的表面上爬行,從點A爬到點B的最短路徑是( ?。〢.9 B. C. D.1217.小明學了在數(shù)軸上畫出表示無理數(shù)的點的方法后,進行練習:首先畫數(shù)軸,原點為O,在數(shù)軸上找到表示數(shù)2的點A,然后過點A作AB⊥OA,使AB=3(如圖).以O為圓心,OB的長為半徑作弧,交數(shù)軸正半軸于點P,則點P所表示的數(shù)介于( )A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間18.如圖,在矩形ABCD中,BC=6,CD=3,將△BCD沿對角線BD翻折,點C落在點處,B交AD于點E,則線段DE的長為( )A.3 B. C.5 D.19.有一個面積為1的正方形,經(jīng)過一次“生長”后,在他的左右肩上生出兩個小正方形,其中,三個正方形圍成的三角形是直角三角形,再經(jīng)過一次“生長”后,變成了上圖,如果繼續(xù)“生長”下去,它將變得“枝繁葉茂”,請你算出“生長”了2020次后形成的圖形中所有的正方形的面積和是( )A.1 B.2021 C.2020 D.201920.如圖,直角三角形兩直角邊的長分別為3和4,以直角三角形的兩直邊為直徑作半圓,則陰影部分的面積是(AB=1,BD⊥BC,BD=BC,CF平分∠BCD交BD、AD于E、F,則EDC的面積為( )A.2﹣2 B.3﹣2 C.2﹣ D.﹣12.將6個邊長是1的正方形無縫隙鋪成一個矩形,則這個矩形的對角線長等于(  )A. B. C.或者 D.或者3.如圖,在△ABC中,∠ABC=45176。連接DE、DF、EF,在此運動變化過程中,下列結(jié)論:①圖中全等的三角形只有兩對;②△ABC的面積是四邊形CDFE面積的2倍;③CD+CE=2FA;④AD2+BE2=DE2.其中錯誤結(jié)論的個數(shù)有(??)A.1個 B.2個 C.3個 D.4個12.我國古代偉大的數(shù)學家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個這樣的圖形拼成,若a=3,b=4,則該矩形的面積為( ∵AB//CD,∴∠ABD=45176?!螧DC=90176。因此點E的軌跡是一條直線,過點C作CH⊥BE,則點H即為使得BE最小時的E點的位置,然后根據(jù)直角三角形的性質(zhì)和勾股定理即可得出答案.【詳解】解:在CB的反向延長線上取一點B’,使得BC=B’C,連接AB’,∵∠ACB=90176?!郆H=BC=,∴CH==.即BE的最小值是.故選C.【點睛】本題是一道動點問題,綜合考查了全等三角形的判定和性質(zhì),等邊三角形的判定和性質(zhì),直角三角形的性質(zhì)和勾股定理等知識,將△ACB構(gòu)造成等邊三角形,通過全等證出∠ABC是定值,即點E的運動軌跡是直線是解決此題的關鍵.8.D解析:D【分析】根據(jù)折疊的性質(zhì)可得AD=A39。BC=,BC2+AB2=AC2,AD=AC,∴AB2+=,∴AB=177。則由面積公式可知,S△ABC=ABAC=BCAD,∴AD=.故選C.【點睛】本題考查了勾股定理的逆定理,需要先證得三角形為直角三角形,再利用三角形的面積公式求得AD的值.16.B解析:B【分析】將正方體的左側(cè)面與前面展開,構(gòu)成一個長方形,用勾股定理求出距離即可.【詳解】解:如圖,AB=.故選:B.【點睛】此題求最短路徑,我們將平面展開,組成一個直角三角形,利用勾股定理求出斜邊就可以了.17.C解析:C【分析】利用勾股定理求出AB的長,再根據(jù)無理數(shù)的估算即可求得答案.【詳解】由作法過程可知,OA=2,AB=3,∵∠OAB=90176。+45176。故③錯誤;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得BE2=BD2+DE2,∵△ADE為等腰直角三角形,∴AE=AD,∴DE2=2AD2,∴BE2=BD2+DE2=BD2+2AD2,在R
點擊復制文檔內(nèi)容
合同協(xié)議相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1