【摘要】§導(dǎo)數(shù)的基本公式和運(yùn)算法則0)()()()()()(])()([)()()()(])()([)()(])()([2?????????????????xvxvxvxuxvxuxvxuxvxuxvxuxvxuxvxuxvxu、差、積、商的導(dǎo)數(shù)并且有處也可導(dǎo)在點(diǎn)則它們的
2025-01-20 04:31
【摘要】復(fù)合函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義...y=(3x-2)2的導(dǎo)數(shù),那么我們可以把平方式展開,利用導(dǎo)數(shù)的四則運(yùn)算法則求導(dǎo).然后能否用其它的辦法求導(dǎo)呢?又如我們知道函數(shù)y=1/x2的導(dǎo)數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導(dǎo)數(shù)又是什么呢?為了解決上面
2025-10-25 19:25
【摘要】第八章第五節(jié)機(jī)動目錄上頁下頁返回結(jié)束一、一個方程所確定的隱函數(shù)及其導(dǎo)數(shù)二、方程組所確定的隱函數(shù)組及其導(dǎo)數(shù)隱函數(shù)的求導(dǎo)方法本節(jié)討論:1)方程在什么條件下才能確定隱函數(shù).例如,方程當(dāng)C0時,能確定隱
2025-10-10 05:57
【摘要】Chapt5導(dǎo)數(shù)和微分15世紀(jì)文藝復(fù)興以后的歐洲,資本主義逐漸發(fā)展,采礦冶煉、機(jī)器發(fā)明、商業(yè)交往、槍炮制造、遠(yuǎn)洋航海、天象觀測等大量實(shí)際問題,給數(shù)學(xué)提出了前所未有的亟待解決的新課題。其中有兩類問題導(dǎo)致了導(dǎo)數(shù)概念的產(chǎn)生:(1)求變速運(yùn)動的瞬時速度;(2)求曲線上一點(diǎn)處的切線。這兩類問題都?xì)w結(jié)為變量變化的快慢程度,即變化率問題。
2025-08-11 09:14
【摘要】其他求導(dǎo)法一、隱函數(shù)的導(dǎo)數(shù)二、對數(shù)求導(dǎo)法三、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)四、高階導(dǎo)數(shù)一、隱函數(shù)的導(dǎo)數(shù)定義:.)(稱為隱函數(shù)由方程所確定的函數(shù)xyy?.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?隱函數(shù)求導(dǎo)法則:用復(fù)合函數(shù)求導(dǎo)法則
2025-07-24 03:15
【摘要】倒數(shù)的認(rèn)識遲影27×7243×34—715×—157—58×—8549×12—27—×14—311
2025-07-18 09:24
【摘要】求導(dǎo)方法導(dǎo)數(shù)的四則運(yùn)算法則復(fù)合函數(shù)的求導(dǎo)法則隱函數(shù)的導(dǎo)數(shù)高階導(dǎo)數(shù)導(dǎo)數(shù)的運(yùn)算規(guī)則uc)cu(???設(shè)u(x),v(x)都是可導(dǎo)的函數(shù),我們有以下規(guī)則:1,常數(shù)提取規(guī)則vu)vu(??????2,逐項(xiàng)求導(dǎo)規(guī)則推廣可得wvu)wvu(?????????3,可導(dǎo)函數(shù)乘
2025-10-10 02:33
【摘要】§2含參量反常積分含參量反常積分的定義、1斂的定義含參量反常積分一致收、2斂的判別方法含參量反常積分一致收、3本節(jié)研究形如???adxyxf),(的含參變量廣義積分的連續(xù)性、可微性與可積性。下面只對無窮限積分討論,無界函數(shù)的情況可類似處理。)(,),(為瑕點(diǎn)bdxyxfba?含參量反常積分的定義、1設(shè)
2025-05-11 03:41
【摘要】數(shù)值分析A第4章數(shù)值逼近與數(shù)值積分清華大學(xué)數(shù)學(xué)科學(xué)系基本內(nèi)容梯形公式和高斯公式。;四種插值方法:牛頓插值,拉格朗日插值,分段線性插值,三次樣條插值。?????0x1xnx0y1y求解插值問題的基本思路構(gòu)造一個(相對簡單的)函數(shù)),(
2025-07-20 04:50
【摘要】?y=f(u),u=(x)?y=f((x))一般的可分解為y=sinu,u=(2x+3)課前復(fù)習(xí)復(fù)合函數(shù)可分解為y=sin(2x+3)?令u=(2x+3)則y=sinu所以復(fù)合函數(shù)可分解為:y
2025-05-14 23:10
【摘要】第4章產(chǎn)品定價策略1.與價格有關(guān)的市場營銷變量2.定價方法3.定價技巧★歐典強(qiáng)化木地板的定價策略1.與價格有關(guān)的市場營銷工具主要項(xiàng)目營銷變量產(chǎn)品價格●基本價格:產(chǎn)品的公開定價●實(shí)際價格:因折扣率、支付條件、消費(fèi)稅等而被修正的價格產(chǎn)品系列價格結(jié)構(gòu)●
2025-05-07 22:16
【摘要】金來中級技術(shù)培訓(xùn)之123法則2B法則一、123法則?1、定義:以技術(shù)分析為依托發(fā)展出來的投資法則之一。它相當(dāng)于道氏理論趨勢發(fā)生轉(zhuǎn)變的定義。在外匯黃金里的運(yùn)用勝之于股票。下降趨勢123法則1、下降趨勢線被突破2、下降趨勢不再創(chuàng)新低3、在下降
2025-05-13 08:56
【摘要】返回上頁下頁目錄1第二節(jié)求導(dǎo)法則(續(xù))隱函數(shù)及由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)一、隱函數(shù)的導(dǎo)數(shù)三、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)四、初等函數(shù)求導(dǎo)問題二、對數(shù)求導(dǎo)法返回上頁下頁目錄2定義:?當(dāng)時個隱數(shù)方程F(x,y)=
2025-10-07 21:17
【摘要】一、偏導(dǎo)數(shù)的概念二、高階偏導(dǎo)數(shù)三、可微與偏導(dǎo)數(shù)的關(guān)系*多元函數(shù)的偏導(dǎo)數(shù)和全微分四、全微分在二元函數(shù)z=f(x,y)中,有兩個自變量x,y,但若固定其中一個自變量,比如,令y=y0,而讓x變化.則z成為一元函數(shù)z=f(x,y0),我們可用討論一元函數(shù)的方法來討論它
2025-08-04 18:32
【摘要】第一篇:《倒數(shù)的認(rèn)識》教案和反思 《倒數(shù)的認(rèn)識》教案和反思 《倒數(shù)的認(rèn)識》 邢芳芳 教學(xué)目標(biāo): ,讓學(xué)生理解和掌握倒數(shù)的意義。在合作探究中掌握求倒數(shù)的方法,會求一個數(shù)的倒數(shù)。 ,提高觀察、...
2025-10-12 05:42