【正文】
nalyze price set category = “TV” and brand=“SONY” 概念層次語法 ? 語法: Use hierarchy hierarchy for attribute_or_dimention ? 不同概念層次采用不同定義方式 ? 模式概念層次 define hierarchy time_hierarchy on date as [date,month quarter,year] ? 集合 分組概念層次 define hierarchy age_hierarchy for age on customer as level1: {young, middle_aged, senior} level0: all level2: {20, ..., 39} level1: young level2: {40, ..., 59} level1: middle_aged level2: {60, ..., 89} level1: senior 概念層次語法(續(xù)) ? 基于操作概念模式 (operationderived hierarchies) define hierarchy age_hierarchy for age on customer as {age_category(1), ..., age_category(5)} := cluster(default, age, 5) all(age) ? 基于規(guī)則概念模式 (rulebased hierarchies) define hierarchy profit_margin_hierarchy on item as level_1: low_profit_margin level_0: all if (price cost) $50 level_1: mediumprofit_margin level_0: all if ((price cost) $50) and ((price cost) = $250)) level_1: high_profit_margin level_0: all if (price cost) $250 興趣度量語法 ? 語法: with interest_measure_name threshold = threshold_value ? 例 : with support threshold = with confidence threshold = 挖掘知識表示語法 ? 用戶指定顯示方法 display as result_form ? 為在不同概念層次上觀察結(jié)果: Multilevel_Manipulation ::= roll up on attribute_or_dimension | drill down on attribute_or_dimension | add attribute_or_dimension | drop attribute_or_dimension 一個完整的 DMQL語句 use database AllElectronics_db use hierarchy location_hierarchy for mine characteristics as customerPurchasing analyze count% in relevance to , , from customer C, item I , purchases P , items_sold S , works_at W , branch B where = and = and = and = ``AmEx39。 Prediction ), clustering,還未包含 characterization, discrimination , association modeling