【摘要】,第三章空間向量與立體幾何,3.1空間向量及其運(yùn)算空間向量運(yùn)算的坐標(biāo)表示,第一頁,編輯于星期六:點(diǎn)三十八分。,第二頁,編輯于星期六:點(diǎn)三十八分。,自,主,預(yù),習(xí),探,新,知,第三頁,編輯于星期六:點(diǎn)三...
2024-10-22 19:06
【摘要】第三章空間向量與立體幾何1、坐標(biāo)運(yùn)算2、共線向量定理3、共面向量定理6、空間向量基本定理7、立體幾何中的向量方法8、角、距離
2025-04-04 05:16
【摘要】,第三章空間向量與立體幾何,3.1空間向量及其運(yùn)算空間向量的數(shù)量積運(yùn)算,第一頁,編輯于星期六:點(diǎn)三十八分。,第二頁,編輯于星期六:點(diǎn)三十八分。,自,主,預(yù),習(xí),探,新,知,第三頁,編輯于星期六:點(diǎn)三十...
2024-10-22 19:05
【摘要】ZPZ空間“角度”問題設(shè)直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復(fù)習(xí)引入①方向向量法將二面角轉(zhuǎn)化為二面角的兩個(gè)面的
2024-11-17 05:47
【摘要】,第三章空間向量與立體幾何,3.2立體幾何中的向量方法第3課時(shí)空間向量與空間角,第一頁,編輯于星期六:點(diǎn)三十八分。,第二頁,編輯于星期六:點(diǎn)三十八分。,自,主,預(yù),習(xí),探,新,知,第三頁,編輯于星期六...
2024-10-22 19:07
【摘要】量方法(一)課件新人教版(選修2-1)平面向量空間向量推廣到立體幾何問題(研究的基本對(duì)象是點(diǎn)、直線、平面以及由它們組成的空間圖形)向量漸漸成為重要工具從今天開始,我們將進(jìn)一步來體會(huì)向量這一工具在立體幾何中的應(yīng)用.前面,我們把。+=,使,實(shí)數(shù)對(duì)共面的
2024-11-21 02:27
【摘要】立體幾何初步復(fù)習(xí)(三)---------空間角(一)知識(shí)回顧,整體認(rèn)識(shí)1.異面直線所成角;定義:范圍:圖形2.直線與平面所成角;定義:范圍:圖形3.二面角.定義:圖形求解步驟:作——證——指——求——答(二)應(yīng)用舉例,深化鞏固△AB
2024-11-19 23:24
【摘要】空間“綜合”問題向量法解立體幾何問題的優(yōu)點(diǎn):1.思路容易找,甚至可以公式化;一般充分結(jié)合圖形發(fā)現(xiàn)向量關(guān)系或者求出(找出)平面的法向量、直線的方向向量,利用這些向量借助向量運(yùn)算就可以解決問題.2.不需要添輔助線和進(jìn)行困難的幾何證明;3.若坐標(biāo)系容易建立,更是水到渠成.復(fù)習(xí)引入如圖,已知:
【摘要】第3章——空間向量的數(shù)量積[學(xué)習(xí)目標(biāo)],掌握兩個(gè)向量的數(shù)量積的概念、性質(zhì)和計(jì)算方法及運(yùn)算規(guī)律.,會(huì)用它解決立體幾何中一些簡單的問題.1預(yù)習(xí)導(dǎo)學(xué)挑戓自我,點(diǎn)點(diǎn)落實(shí)2課堂講義重點(diǎn)難點(diǎn),個(gè)個(gè)擊破3當(dāng)堂檢測當(dāng)堂訓(xùn)練,體驗(yàn)成功[知識(shí)鏈接
2024-11-18 08:08
【摘要】第3章——空間向量及其運(yùn)算空間向量及其線性運(yùn)算[學(xué)習(xí)目標(biāo)],幾何表示法、字母表示法...1預(yù)習(xí)導(dǎo)學(xué)挑戓自我,點(diǎn)點(diǎn)落實(shí)2課堂講義重點(diǎn)難點(diǎn),個(gè)個(gè)擊破3當(dāng)堂檢測當(dāng)堂訓(xùn)練,體驗(yàn)成功[知識(shí)鏈接]觀察正方體中過同一個(gè)頂點(diǎn)的
【摘要】第3章——空間向量的應(yīng)用直線的方向向量與平面的法向量[學(xué)習(xí)目標(biāo)]..1預(yù)習(xí)導(dǎo)學(xué)挑戰(zhàn)自我,點(diǎn)點(diǎn)落實(shí)2課堂講義重點(diǎn)難點(diǎn),個(gè)個(gè)擊破3當(dāng)堂檢測當(dāng)堂訓(xùn)練,體驗(yàn)成功[知識(shí)鏈接],它們乊間有何關(guān)系?答:相互平行.?
【摘要】第3章——空間線面關(guān)系的判定[學(xué)習(xí)目標(biāo)]、線面、面面的垂直和平行關(guān)系.、面位置關(guān)系的一些定理(包括三垂線定理)..1預(yù)習(xí)導(dǎo)學(xué)挑戓自我,點(diǎn)點(diǎn)落實(shí)2課堂講義重點(diǎn)難點(diǎn),個(gè)個(gè)擊破3當(dāng)堂檢測當(dāng)堂訓(xùn)練,體驗(yàn)成功[知識(shí)鏈接]
2024-11-17 19:02
【摘要】立體幾何中的向量方法——方向向量與法向量如圖,l為經(jīng)過已知點(diǎn)A且平行于非零向量a的直線,那么非零向量a叫做直線l的方向向量。l?A?Pa1.直線的方向向量直線l的向量式方程換句話說,直線上的非零向量叫做直線的方向向量APta?一、方向向量與法向量
2025-06-06 00:10
【摘要】向量法解立體幾何1、直線的方向向量和平面的法向量⑴.直線的方向向量:若A、B是直線上的任意兩點(diǎn),則為直線的一個(gè)方向向量;與平行的任意非零向量也是直線的方向向量.⑵.平面的法向量:若向量所在直線垂直于平面,則稱這個(gè)向量垂直于平面,記作,如果,那么向量叫做平面的法向量.⑶.平面的法向量的求法(待定系數(shù)法):①建立適當(dāng)?shù)淖鴺?biāo)系.②設(shè)平面的法向量為.③求出平面內(nèi)兩
【摘要】1.如圖3-5,已知兩條異面直線所成的角為θ,在直線a、b上分別取E、F,已知A’E=m,AF=n,EF=l,求公垂線AA′的長d.EFEAAAAF?????解:22()EFEAAAAF??????2222()EAAAAFE
2024-11-18 00:19