【摘要】柯西不等式?答案:及幾種變式.、b、c、d為實(shí)數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實(shí)數(shù),則.變式:或或.定理:設(shè),則(當(dāng)且僅當(dāng)時(shí)取等號,假設(shè))變式:.定理:設(shè)是兩個(gè)向量,則.等號成立?(是零向量,或者共線)練習(xí):已知a、b、c、d為實(shí)數(shù),求證.
2025-04-04 05:05
【摘要】精品課件不等關(guān)系與不等式精品課件在考察事物之間的數(shù)量關(guān)系時(shí),經(jīng)常要對數(shù)量的大小進(jìn)行比較,我們來看下面的例子。國際上常用恩格爾系數(shù)(記為n)來衡量一個(gè)國家和地區(qū)人民的生活水平的高低。它的計(jì)算公式是。%n??100食品消費(fèi)額消
2025-01-06 15:06
【摘要】第一課時(shí)二維形式的柯西不等式(一)教學(xué)要求:認(rèn)識二維柯西不等式的幾種形式,理解它們的幾何意義,并會(huì)證明二維柯西不等式及向量形式.教學(xué)重點(diǎn):會(huì)證明二維柯西不等式及三角不等式.教學(xué)難點(diǎn):理解幾何意義.教學(xué)過程:一、復(fù)習(xí)準(zhǔn)備:1.提問:二元均值不等式有哪幾種形式?答案:(0,0)2abab
2024-11-19 20:23
【摘要】:2baab??復(fù)習(xí)引入基本不等式:.)0,0(2????baabba;222abba??講授新課.4,的最值,求是正數(shù)且abbaba??例1.講授新課.4,的最值,求是正數(shù)且abbaba??例1.變式1..42,的最值,求
2024-11-19 18:02
【摘要】不等式的性質(zhì)素材?一.復(fù)習(xí)?不等式的基本原理及含義?a-b0ab?a-b=0a=b?a-bab?四大作用:?(1)比較兩個(gè)實(shí)數(shù)的大小,(2)推導(dǎo)不等式的性質(zhì)
2024-11-18 12:09
【摘要】:2baab??引入新課提問1:我們把“風(fēng)車”造型抽象成下圖.在正方形ABCD中有4個(gè)全等的直角三角形.設(shè)直角三角形的兩條直角邊的長為a、b,那么正方形的邊長為多少?面積為多少呢?ADCBGEFH引入新課提問1:我們把“風(fēng)車”造型抽象成下圖.在
2024-11-19 18:20
【摘要】不等式的性質(zhì)不等式不等式的證明不等式的解法應(yīng)用不等式的性質(zhì)互逆性—ab傳遞性—ab,bc可加性—ab推論移項(xiàng)法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2025-07-22 01:43
【摘要】淄川般陽中學(xué)洪貴云基本不等式:(說課)2baab??教材分析教法分析教學(xué)目標(biāo)教學(xué)過程設(shè)計(jì)說明一.教材分析(一)教材的地位和作用(二)課時(shí)安排一.教材分析(一)教材的地位和作用基本不等式
2025-08-04 23:52
【摘要】高次不等式和分式不等式的解法一.高次不等式的解法對于不等式(x-a1)(x-a2)(x-an)0的解法是穿根標(biāo)線法a1a2an例1解下列不等式:(1)(x+1)(x-1)(x-2)0(2)x(x-1)2(x+1)3(x+2)0(3)(x-3)(x
2025-03-13 05:16
【摘要】第三講柯西不等式與排序不等式課題:排序不等式宋云靜已知a,b,c為實(shí)數(shù),求證cabcabcba?????222引例知識探究先思考一個(gè)具體的數(shù)字計(jì)算題:已知兩組數(shù)1,2,3和4,5,6,若123,,ccc是4,5,6的一個(gè)排列,則123123ccc??
2024-11-18 12:11
【摘要】第2課時(shí)基本不等式【課標(biāo)要求】1.理解并掌握定理1、定理2,會(huì)用兩個(gè)定理解決函數(shù)的最值或值域問題.2.能運(yùn)用平均值不等式(兩個(gè)正數(shù)的)解決某些實(shí)際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點(diǎn))2.實(shí)際應(yīng)用中的最值問題通常轉(zhuǎn)化為y=ax+bx
2025-07-23 17:21
【摘要】第三章不等式不等關(guān)系不等關(guān)系與不等式課時(shí)目標(biāo).,并能運(yùn)用這些性質(zhì)解決有關(guān)問題.1.比較實(shí)數(shù)a,b的大小(1)文字?jǐn)⑹鋈绻鸻-b是正數(shù),那么a____b;如果a-b等于____,那么a=b;如果a-b是負(fù)數(shù),那么a____b,反之也成立.(2)符號表示
2024-12-05 06:34
【摘要】三個(gè)正數(shù)的算術(shù)3幾何平均不等式?,,?,有怎樣的不等式成立會(huì)個(gè)正數(shù)對于例如式能否推廣呢這個(gè)不等關(guān)系算數(shù)平均與幾何平均的的數(shù)給出了兩個(gè)正基本不等式思考3.,,,,,:,,,,,等號成立時(shí)當(dāng)且僅當(dāng)那么如果可能有個(gè)正數(shù)對于們猜想我式形的等式不本基比類cbaabccbaRcbacba???????
2024-11-18 12:12
【摘要】均值不等式的推廣:2、222(,)1122ababababRab????????3(,,)3abcabcabcR?????1、三、典例分析:,,abc222abcabbcca?????例1、已知是不全相等的實(shí)數(shù),求證:22
【摘要】,ab3abab???ab例1、若正數(shù)滿足,則的取值范圍是什么?解:32ababab????當(dāng)且僅當(dāng)ab?時(shí),等號成立。32abab???2()230abab????3ab??或1ab??(舍)9ab??ab?的取值范圍是[9,)??,ab3ab