【摘要】《等比數(shù)列的前n項和公式》教學設計說明河南省開封市第二十五中學 姜黎黎《等比數(shù)列前n項和》是人教版必修5第二章數(shù)列中第五節(jié)第一課時的內容。下面,我從教材分析,情境創(chuàng)設、公式推導,公式應用,教學反思等幾個方面,談談自己的管窺之見,與各位老師探討。?教材分析等比數(shù)列的前n項和是“等差數(shù)列的前n項和”與“等比數(shù)列”內容的延續(xù)、是進一步學習數(shù)列知識和解決一類求和問題的重要
2025-05-02 13:16
【摘要】等差數(shù)列和等比數(shù)列的應用復習一、課堂練習:?????????8276543aaaaaaaan則,中,若等差數(shù)列.,則,,,,五項分別為:在等比數(shù)列中,有連續(xù)12cbab=a=c=ac=;?
2025-10-31 01:17
【摘要】1“一尺之棰,日取其半,萬世不竭?!睙o窮等比數(shù)列各項和的概念無窮等比數(shù)列各項和的概念1證明:無窮等比數(shù)列各項和的概念證明:無窮等比數(shù)列各項和的概念公式:無窮等比數(shù)列各項和的概念無窮等比數(shù)列各項和的應用應用:發(fā)現(xiàn)四:化循環(huán)小數(shù)為分數(shù)的一般方法:
2025-11-03 19:04
【摘要】賞析等比數(shù)列的前n項和公式的幾種推導方法山東張吉林(山東省萊州五中郵編261423)等比數(shù)列的前n項和公式是學習等比數(shù)列知識中的重點內容之一,其公式:當時,①或②當q=1時,本身不僅蘊涵著分類討論的數(shù)學思想,而且用以推導等比數(shù)列前n項和公式的方法---錯位相減法,更是在歷年高考題目中頻繁出現(xiàn)。本文變換視野、轉換思維,從不同的角度加以推導,以加深對公式的理解與
2025-08-23 17:57
【摘要】《等比數(shù)列的前n項和》(第一課時)人教A版高中數(shù)學必修5第二章第5節(jié)知識與技能目標:理解等比數(shù)列的前n項和公式的推導方法;掌握等比數(shù)列的前n項和公式及其簡單應用.過程與方法目標:通過本節(jié)課的學習,提高學生的建模意識及分析問題、解決問題的能力,領悟分類討論思想和方程思想的應用
2025-07-17 21:58
【摘要】主講老師:陳震等比數(shù)列的前n項和(一)復習引入1.等比數(shù)列的定義:2.等比數(shù)列通項公式:)0,(111????qaqaann)0,(1????qaqaamnmn復習引入3.{an}成等比數(shù)列)0,(1?????qNnqaa
2025-01-07 11:53
【摘要】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第2課時等差、等比數(shù)列的通項及求和公式要點·疑點·考點(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S
2025-08-16 01:47
【摘要】
2025-11-03 18:09
2025-11-03 17:10
【摘要】等比數(shù)列及其性質期末復習?????是等比數(shù)列若重要結論:項和公式前推廣:通項公式:為等比數(shù)列、定義:}{.4:.3_________________}{1nnnnnaSnaaa一、知識要點:1nnaa??常數(shù)(2),q
2025-10-31 01:53
【摘要】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第4課時等差、等比數(shù)列的應用要點·疑點·考點按復利計算利息的一種儲蓄,本金為a元,每期利率為r,存期為
2025-11-03 16:42
【摘要】一、選擇題(每題4分,共16分)1.(2020·遼寧高考)設Sn為等比數(shù)列{an}的前n項和,已知3S3=a4-2,3S2=a3-2,則公比q=()(A)3(B)4(C)5(D)6【解析】選,得3a3=a
2024-11-21 01:09
【摘要】復習:1,00nnnnaaqnNqaa???????⑴{}成等比數(shù)列()(2)通項公式:)0(111?????qaqaann)0(1?????qaqaamnmn國際象棋盤內麥子數(shù)“爆炸”傳說西塔發(fā)明了國際象棋而使國王十分高興,他決定要重賞西塔,西塔說:
2025-11-08 19:36
【摘要】本資料由書利華教育網(又名數(shù)理化網)為您整理1本資料由書利華教育網(又名數(shù)理化網)為您整理2復習回顧等比數(shù)列前n項和公式11nnaaqSq???1(1)1nnaqSq???公式的推證用的是錯位相減法當q=1時,1naSn?
2025-11-08 05:41
【摘要】數(shù)列求通項教學設計一、目標分析使學生掌握等差、等比數(shù)列求通項的公式法,特殊數(shù)列求通項的累加、累乘法,一般數(shù)列已知前n項和求通項的做法和構造新數(shù)列的一般方法。培養(yǎng)學生觀察、歸納能力,在學習過程中,體會歸納思想和化歸思想并加深認識;通過累加、累乘及構造等比數(shù)列的方法探究,培養(yǎng)學生分析探索能力,增強運用公式解決實際問題的能力等.
2025-11-09 15:56