【摘要】《導數(shù)及其應用》經(jīng)典題型總結(jié)一、知識網(wǎng)絡結(jié)構(gòu)導數(shù)導數(shù)的概念導數(shù)的運算導數(shù)的應用導數(shù)的幾何意義、物理意義函數(shù)的單調(diào)性函數(shù)的極值函數(shù)的最值常見函數(shù)的導數(shù)導數(shù)的運算法則矚慫潤厲釤瘞睞櫪廡賴賃軔朧。題型一求函數(shù)的導數(shù)及導數(shù)的幾何意義考點一導數(shù)的概念,物理意義的應用例.()設(shè)函數(shù)在處可導,且,求;()已知,求.考點二導數(shù)的幾何意
2025-03-25 00:40
【摘要】極限與導數(shù)要點·疑點·考點返回要點·疑點·考點返回要點·疑點·考點返回1.y=f(x)在(a,b)上可導,若f′(x)>0,則f(x)為增函數(shù),若f′(x)<0,則f(x)為減函數(shù)2.可導函數(shù)f(x)在極值點處的導
2024-11-10 22:32
【摘要】學大教育高新校區(qū)物理組一、動量,沖量與動量定理1、動量:運動物體的質(zhì)量和速度的乘積叫做動量.矢量性:方向與速度方向相同;瞬時性:通常說物體的動量是指運動物體某一時刻的動量,計算動量應取這一時刻的瞬時速度。相對性:物體的動量亦與參照物的選取有關(guān),通常情況下,指相對地面的動量。2、動量、速度和動能的區(qū)別和聯(lián)系動量、速度和動能是從不同角度描述物體運動狀態(tài)的物理
2025-03-27 01:32
【摘要】棷僑???穵???肕穱???榠?脅?????坕??籂?霿?屖刣??萒?嶝?聁???辯孕?瀿?瀁?﹠???底????歔?肸?聸??_????????????濕蕸?迀蹷偺?必??????尵?勫嬞???????纚蕕?飼???╒??送????鶰︺?庉?賄ヨ檠峽????????濉谽瓔??惠?????狅祲??鶘?稟へ遀????????????????W慠???梕硦恀????鮞姼?詆???
2025-03-24 04:06
【摘要】導數(shù)-常見題型例2、已知P為拋物線y=x2上任意一點,則當點P到直線x+y+2=0的距離最小時,求點P到拋物線準線的距離。例1、(1)求過點(1,1)且與曲線y=相切的直線方程。(2)求過點(2,0)且與曲線y=相切的直線方程。一、導數(shù)的幾何意義:——切線的斜率
2024-11-03 20:17
【摘要】1.函數(shù)的單調(diào)性(1)利用導數(shù)的符號判斷函數(shù)的增減性注意:在某個區(qū)間內(nèi),f39。(x)>0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時f39。(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時就必須寫f39。(x)≥0。(2)求函數(shù)單調(diào)區(qū)間的步驟①確定f(x)的定義域;
2024-12-17 15:20
【摘要】空間幾何體題型與方法歸納(文科)考點一證明空間線面平行與垂直1、如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,點D是AB的中點,(I)求證:AC⊥BC1;(II)求證:AC1//平面CDB1;解析:(1)證明線線垂直方法有兩類:一是通過三垂線定理或逆定理證明,二是通過線面垂直來證明線線垂直;(2)證明線面平行也有兩類:一是通過
2025-03-24 03:55
【摘要】導數(shù)的應用1.函數(shù)的單調(diào)性 (1)利用導數(shù)的符號判斷函數(shù)的增減性 注意:在某個區(qū)間內(nèi),f'(x)>0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時f'(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時就必須寫f'(x)≥0。(2)求函數(shù)單調(diào)區(qū)間的步驟?、俅_定f(x)的定義域;?、谇髮?shù); ③由
2025-08-08 20:22
【摘要】導數(shù)---常見題型例2、已知P為拋物線y=x2上任意一點,則當點P到直線x+y+2=0的距離最小時,求點P到拋物線準線的距離。例1、(1)求過點(1,1)且與曲線y=相切的直線方程。(2)求過點(2,0)且與曲線y=相切的直線方程。一、導數(shù)的幾何意義:——切線的斜
2024-11-09 02:26
【摘要】數(shù)列1、等差數(shù)列與等比數(shù)列:常設(shè)首項、(公差)比為基本量,借助于消元思想及解方程組思想等。轉(zhuǎn)化為“基本量”是解決問題的基本方法。1)若數(shù)列是等差數(shù)列,則數(shù)列是等比數(shù)列,公比為,其中是常數(shù),是的公差。(a0且a≠1);2)若數(shù)列是等比數(shù)列,且,則數(shù)列是等差數(shù)列,公差為,其中是常數(shù)且,是的公比。3)若既是等差數(shù)列又是等比數(shù)列,則是非零常數(shù)數(shù)列。等
2025-07-23 11:20
【摘要】......導數(shù)題型一:證明不等式不等式的證明問題是中學數(shù)學教學的一個難點,傳統(tǒng)證明不等式的方法技巧性強,多數(shù)學生不易想到,,這為我們處理不等式的證明問題又提供了一條新的途徑,并且在近年高考題中使用導數(shù)證明不等式也時有出現(xiàn),但現(xiàn)行教材對這一問
【摘要】蘇教版二年級數(shù)學下冊期末復習題型歸納與分析班級:姓名:題型一:看圖列式計算。1.2.□÷□=□()??□()□÷□=□盤??□個□÷□=□()??□()
2025-01-10 01:13
【摘要】導數(shù)經(jīng)典例題剖析考點一:求導公式。例1.是的導函數(shù),則的值是??键c二:導數(shù)的幾何意義。例2.已知函數(shù)的圖象在點處的切線方程是,則。??键c三:導數(shù)的幾何意義的應用。:,直線,且直線與曲線C相切于點,求直線的方程及切點坐標。考點四:函數(shù)的單調(diào)性。,求的取值范圍。
2025-08-08 18:24
【摘要】專題8:導數(shù)(文)經(jīng)典例題剖析考點一:求導公式。例1.是的導函數(shù),則的值是??键c二:導數(shù)的幾何意義。例2.已知函數(shù)的圖象在點處的切線方程是,則。??键c三:導數(shù)的幾何意義的應用。:,直線,且直線與曲線C相切于點,求直線的方程及切點坐標。考點四:函數(shù)的單調(diào)性。,求的取值范
2025-04-04 05:16
【摘要】導數(shù)文科大題1.知函數(shù)?,?.?(1)求函數(shù)?的單調(diào)區(qū)間;?(2)若關(guān)于?的方程?有實數(shù)根,求實數(shù)?的取值范圍.答案解析2.已知?,??(1)若?,求函數(shù)?在點?處的切線方程;
2025-07-26 05:40