【摘要】高二數(shù)學備課組的絕對值平面內(nèi)與兩個定點F1,F(xiàn)2的距離的差等于常數(shù)的點的軌跡叫做雙曲線.(小于︱F1F2︱)定義:oF2F1M12222??byax12222??b
2024-11-18 12:09
【摘要】選修1-1雙曲線的幾何性質(zhì)一、選擇題1.已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線方程為()24-y212=1B.x212-y24=1210-y26=1D.x26-y210=1[答案]A[解析]∵e=
2024-11-24 22:00
【摘要】白銀市第三中學張建平一、雙曲線小結(jié)雙曲線知識結(jié)構(gòu)圖標準方程幾何性質(zhì)定義共軛雙曲線等軸雙曲線漸近線定義標準方程第一定義:
2024-11-12 16:45
【摘要】下頁上頁首頁小結(jié)結(jié)束下頁上頁首頁小結(jié)結(jié)束1.橢圓的定義和等于常數(shù)2a(2a|F1F2|)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的2.引入問題:差等于常數(shù)
【摘要】B'C'CBA251213A'xOy雙曲線的簡單幾何性質(zhì)(一)【學習目標】掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì).【自主學習】雙曲線的簡單幾何性質(zhì):1.范圍、對稱性2.頂點頂點:??0,),0,(21aAaA?特殊點:
2024-12-05 06:41
【摘要】1(2,2)P(其最小距離為52)A(3,2)和拋物線y2=2x,F是拋物線焦點,試在拋物線上求一點P,使|PA|與|PF|的距離之和最小,并求出這個最小值.課外思維挑戰(zhàn)題:拋物線的簡單幾何性質(zhì)(一)2練習:點A的坐標為(3,1),若P是拋物線24yx?上的一動點,
2024-11-09 01:25
【摘要】定義圖象方程焦點系yoxF1F2··yoF1F2··|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2
2024-11-19 15:32
【摘要】上海市控江中學柳敏一、復習回顧思考并回答下列問題1、橢圓的定義是什么?2、橢圓定義中有哪些注意點?3、橢圓的標準方程是怎樣的?二、講授新課問題:如果把橢圓定義中的和改成差:12||||2PFPFa??或21||||2PFPFa??,即:12||
2024-11-12 18:20
【摘要】標準方程:ace?1、范圍:x≥a或x≤-a;2、對稱性:關(guān)于x軸,y軸,原點對稱;3、頂點:A1(-a,0),A2(a,0),實軸,且;虛軸,且.4、離心率:(e1)a,b,c的幾何意義各是:
2024-11-09 08:10
【摘要】直線與雙曲線一:直線與雙曲線位置關(guān)系種類xyO種類:相離;相切;相交(兩個交點,一個交點)位置關(guān)系與交點個數(shù)xyOxyO相交:兩個交點相切:一個交點相離:0個交點相交:一個交點總結(jié)兩個交點一個交點
2024-11-06 19:21
【摘要】江蘇省漣水縣第一中學高中數(shù)學雙曲線的幾何性質(zhì)(2)教學案蘇教版選修1-1教學目標:1.了解雙曲線簡單幾何性質(zhì),如范圍、對稱性、頂點、漸近線和離心率等.2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題.教學重點:雙曲線的幾何性質(zhì)及初步運用.教學難點:雙曲線的漸近線.教學過程:一復習回顧1.雙曲線的標準方程和幾何性質(zhì)
2024-12-05 03:09
【摘要】江蘇省漣水縣第一中學高中數(shù)學雙曲線的幾何性質(zhì)(1)教學案蘇教版選修1-1教學目標:1.了解雙曲線簡單幾何性質(zhì),如范圍、對稱性、頂點、漸近線和離心率等.2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題.教學重點:雙曲線的幾何性質(zhì)及初步運用.教學難點:雙曲線的漸近線.教學過程:一、復習提問引入新課1.橢圓有哪些幾何性
2024-11-20 00:31
【摘要】雙曲線的定義及標準方程橢圓的第一定義到平面上兩定點F1,F(xiàn)2的距離之和(大于|F1F2|)為常數(shù)的點的軌跡aPFPF221???橢圓的第二定義(準線)?點M與定點F的距離和它到定直線L的距離的比是常數(shù)的點的軌跡。標準方程圖象范圍對稱性
【摘要】導標:首先,請同學們回憶一下:1、橢圓的定義是什么?2、橢圓的標準方程是什么?3、對應的橢圓圖形是怎樣?今天,我們將從橢圓的標準方程出發(fā),借助圖形來探求橢圓的一些幾何性質(zhì)。達標:一、橢圓的范圍oxy由11122222222?????b
2024-11-18 15:24
【摘要】直線與雙曲線?ABP,BA12yx)1,1(22中點恰為且使兩點、交于與雙曲線能否作一直線過點???這樣的直線不存在12yx),1,1(P22??)k)(1x(k1y,:不存在顯然不可能方程為存在設(shè)直線解????)k1(kxy???則得代入12yx22??)(03kk
2024-11-09 03:12