【摘要】【3年高考2年模擬】第3章不等式第一部分三年高考薈萃高考試題分類解析一、選擇題1.(2020天津文)設(shè)變量,xy滿足約束條件?????????????01042022xyxyx,則目標函數(shù)32zxy??的最小值為()A.5?B.4?C.2?D.3
2025-08-11 14:54
【摘要】第一篇:數(shù)學利用導數(shù)證明不等式的常見題型及解題技巧 利用導數(shù)證明不等式的常見題型及解題技巧 趣題引入 已知函數(shù)g(x)=xlnx設(shè)0ab,證明:0g(a)+g(b)-2(a+b 2)(...
2024-10-31 12:18
【摘要】第一篇:利用二重積分證明不等式 f(x),g(x)是[a,b] òb af(x)dxòg(x)dx£(b-a)òf(x)g(x)dxaabb 證明由于f(x),g(x)是[a,b]單調(diào)增加的函...
2024-10-27 16:26
【摘要】利用放縮法證明數(shù)列型不等式壓軸題摘要:縱觀近幾年高考數(shù)學卷,壓軸題很多是數(shù)列型不等式,其中通常需要證明數(shù)列型不等式,它不但可以考查證明不等式和數(shù)列的各種方法,而且還可以綜合考查其它多種數(shù)學思想方法,充分體現(xiàn)了能力立意的高考命題原則。處理數(shù)列型不等式最重要要的方法為放縮法。放縮法的本質(zhì)是基于最初等的四則運算,利用不等式的傳遞性,其優(yōu)點是能迅速地化繁為簡,化難為易,達到事半功倍的效
2025-03-24 12:45
【摘要】第一篇:均值不等式證明 均值不等式證明 一、已知x,y為正實數(shù),且x+y=1求證 xy+1/xy≥17/ 41=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥ 2當且僅當xy=...
2024-11-05 18:15
【摘要】第一篇:不等式證明[精選] §14不等式的證明 不等式在數(shù)學中占有重要地位,由于其證明的困難性和方法的多樣性,,而變形的依據(jù)是不等式的性質(zhì),不等式的性分類羅列如下:不等式的性質(zhì):a3b?a-b0...
2024-11-08 22:00
【摘要】導數(shù)在不等式證明中的應(yīng)用利用單調(diào)性證明不等式.2利用中值定理證明不等式.3利用凹凸性證明不等式.4利用最值證明不等式24-1例設(shè)2eeab???,證明2224lnln()ebaba???.利用單調(diào)性證明不等式分析:2222222
2025-07-26 05:31
【摘要】第一篇:不等式的證明 學習資料 教學目標 (1)理解證明不等式的三種方法:比較法、綜合法和分析法的意義; (2)掌握用比較法、綜合法和分析法來證簡單的不等式; (3)能靈活根據(jù)題目選擇適當?shù)?..
2024-10-28 23:51
【摘要】第一篇:導數(shù)證明不等式構(gòu)造函數(shù)法類別(教師版) 導數(shù)證明不等式構(gòu)造函數(shù)法類別 1、移項法構(gòu)造函數(shù) 1£ln(x+1)£xx+11-1,分析:本題是雙邊不等式,其右邊直接從已知函數(shù)證明,左邊構(gòu)造函...
2024-10-27 22:43
【摘要】4、排序不等式(一)概念【9】:設(shè)有兩組實數(shù)(1)(2)滿足(3)(4)另設(shè)(5)是實數(shù)組(
2025-06-25 22:56
【摘要】不等式的證明【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)∵a0,b>
2024-11-06 13:38
【摘要】第一篇:證明不等式方法 不等式的證明是高中數(shù)學的一個難點,題型廣泛,涉及面廣,證法靈活,錯法多種多樣,本節(jié)通這一些實例,歸納整理證明不等式時常用的方法和技巧。1比較法 比較法是證明不等式的最基本方...
2024-10-29 04:53
【摘要】第一篇:不等式的證明 復習課:不等式的證明 教學目標 (1).理解絕對值的幾何意義并能用其證明不等式和解絕對值不等式.(2).了解數(shù)學歸納法的使用原理.(3).會用數(shù)學歸納法證明一些簡單問題...
【摘要】不等式的證明松北高級中學吳宏亮【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)
2024-11-10 05:07
【摘要】不等式的證明(放縮法)1.設(shè),,則的大小關(guān)系是()A.B.C.D.2.已知三角形的三邊長分別為,設(shè),則與的大小關(guān)系是()A.B.C.D.3.設(shè)不等的兩個正數(shù)滿足,則的取值范
2025-07-24 12:58