【摘要】中考第一輪復習:相似三角形友情提示:請根據(jù)課本相關內容,快速解決下列問題,5分鐘后交流展示你的成果?!疚曳此?,我梳理】(一)相似三角形1.定義:各角對應________,各邊對應成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角形一邊的直線
2025-11-21 11:56
【摘要】相似三角形的性質識別特征對應邊上的高對應角的角平分線對應邊上的中線課堂練習(1)周長課后小結(2)面積夜色的校園多美,是我們讀書求學的好地方。相似三角形的識別問:相似三角形的識別方法有哪些?證二組對應角相等證三組對應邊成比例證二組對應邊成比例
2025-07-23 21:07
【摘要】問題1:相似三角形的有關概念(1).三個角對應_____、三條邊對應_______的兩個三角形叫做相似三角形(2).相似三角形的對應角_____,對應邊________.(3).相似比等于____的兩個三角形全等.相等成比例相等成比例1一、復習提問相似三角形的識別問:除定義之外,相似
2025-11-15 13:48
【摘要】一、下列各題有“病”嗎?如果有“病”,請寫出“病因”,沒有解答的,請你解答,并寫出你認為易讓別人犯錯的“陷阱”在哪兒?1:如圖1,要ΔADB∽ΔABC,那么還應增加的條件是_________.ACBD2:已知:如圖2,在□ABCD中,點E為邊CD上的一點,AE的延長線交BC的延長線于點F,請你寫出圖中的
2025-11-15 14:14
【摘要】相似三角形相似三角形?相似三角形的概念?相似三角形的基本性質?相似三角形的預備定理兩幅形狀相同大小不等的長城的圖片是相似的。ABCDEF△ABC與△DEF三個角對應相等,三條邊對應成比例的兩個三角形,做相似三角形(similartrianglec)AB
2025-10-31 05:43
【摘要】相似三角形復習(2)△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是()A∠ACP=∠BB∠APC=∠ACBCAC2=AP·ABDAC:CP=AB:BCABCP2、如圖,D、E分別是AB、AC上兩點,CD與BE相
2025-10-31 12:54
【摘要】復習:1、_______________________________的兩個三角形叫做相似三角形對應角相等、對應邊成比例2、全等三角形的定義:___________________________的三角形。對應角相等、對應邊相等3、證明一般三角形全等的方法有__________________ASA、AAS、SAS、SSS
2025-10-28 21:57
【摘要】三角形全等的判定(二)孫金煥已知:如圖,要得到△ABC≌△ABD,已經(jīng)具備的條件是AB=AB,根據(jù)所給的判定方法,在下列橫線上寫出還需要的兩個條件(1)(SAS)(
2025-10-28 15:12
【摘要】全等三角形判定11全等形:能夠完全重合的兩個圖形叫全等形小結:2全等三角形:能夠完全重合的兩個三角形叫全等三角形:重合的邊叫對應邊重合的頂點叫對應頂點重合的角叫對應角其中全等的符號≌必須注意使用時要做到對應!觀察中發(fā)現(xiàn):全等三角形性質1、全等三角對應邊
2025-10-28 20:40
【摘要】(1)撮鎮(zhèn)中學劉老師如圖23.—16,△ABC與△A′B′C′相似,記作“△ABC∽△A′B′C′”,讀作“△ABC相似于△A′B′C′”ABCA′B′C′''''''ACCACBBCBAAB??∠A=∠
2025-11-12 03:06
【摘要】§三角形全等的判定(一)公主嶺四中張蕾ABCA′B′C′1、什么叫全等三角形?能夠重合的兩個三角形叫全等三角形。2、已知△ABC≌△A′B′C′,找出其中相等的邊與角①AB=A′B′③AC=A′C′②BC=B′C′
2025-11-12 04:21
【摘要】相似三角形的判定定理2復習:?△ADE∽△ABCDE//BCABCDEADBCE如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似.新課:∠ADE=∠B,∠AED=∠C證明:在△ABC的邊AB(或延長線上)截取AD=A′B′,過D作BC
【摘要】全等三角形的判定(三)執(zhí)教者:鄧時榮復習:2、記得“邊邊邊”、“邊角邊”的具體內容嗎?3、當兩邊及其中一邊的對角對應相等的兩個三角形一定全等嗎?三邊對應相等的兩個三角形全等;兩邊和它們的夾角對應相等的兩個三角形全等。不一定全等1、前面我們學習過哪幾種判定兩個三角形全等的方法?邊邊邊;邊角邊ACB
2025-08-23 12:47
【摘要】宇軒圖書下一頁上一頁末頁目錄首頁考點知識精講宇軒圖書下一頁上一頁末頁目錄首頁考點訓練中考典例精析舉一反三考點知識精講宇軒圖書下一頁上一
2025-05-01 22:19
【摘要】相似三角形的判定與性質練習一.選擇題(共14小題)1.(2011?義烏市)如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四邊形ACDE是平行四邊形,連接CE交AD于點F,連接BD交CE于點G,連接BE.下列結論中:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD?AE=EF?CG;
2025-03-25 06:32