【正文】
。 (4)渦輪出氣殼。工作輪與渦輪軸的連接方式有體式和裝配式兩種。裝配式優(yōu)缺點(diǎn)與整體式正好相反,其是將工作輪的輪盤與渦輪軸用鍵連接。 ②在工作過(guò)程方面,采用二沖程,提高充量系數(shù),改善燃燒過(guò)程,優(yōu)化空燃比。只有采用增壓技術(shù)改進(jìn)柴油機(jī),可以提高充量密度,大大提高功率,改善燃燒過(guò)程和經(jīng)濟(jì)性,降低排放以及噪聲。②從經(jīng)濟(jì)性角度,發(fā)動(dòng)機(jī)的進(jìn)氣得到壓縮,換氣過(guò)程形成正的泵氣功,渦輪增壓還能利用一部分排氣能量,發(fā)動(dòng)機(jī)的指示熱效率有所提高;因?yàn)橛袙邭庾饔?,缸?nèi)殘余廢氣系數(shù)降低,同時(shí)減少了對(duì)進(jìn)氣的加熱,充量系數(shù)得到提高;機(jī)械效率也隨增壓度的提高而提高。的生成率隨溫度升高而急劇上升;發(fā)動(dòng)機(jī)增壓后,缸內(nèi)溫度升高,加速了NO的生成。廢氣渦輪增壓器是由壓氣機(jī)和燃?xì)鉁u輪組成,壓氣機(jī)通常采用單級(jí)離心式、徑向葉輪和無(wú)葉擴(kuò)壓器,而燃?xì)鉁u輪的型式取決于增壓器的大小,小型渦輪增壓器的廢氣渦輪一般采用徑流式渦輪,大型廢氣渦輪增壓器則采用單級(jí)軸流式渦輪。根據(jù)渦輪特性曲線,給出渦輪的轉(zhuǎn)速和流速,即可得出膨脹比和效率。(2)扭矩按下式計(jì)算: (26)式中,為發(fā)動(dòng)機(jī)指示熱效率;發(fā)動(dòng)機(jī)轉(zhuǎn)速和空燃比的函數(shù),可由臺(tái)架試驗(yàn)測(cè)得;為單位時(shí)間噴入氣缸的燃油量;為燃油低熱值。在原柴油機(jī)的電控系統(tǒng)基礎(chǔ)上,加裝1套天然氣電控噴射系統(tǒng),電子點(diǎn)火系統(tǒng)。天然氣發(fā)動(dòng)機(jī)增壓面臨著與汽油機(jī)增壓同樣的技術(shù)難題,其主要技術(shù)瓶頸在于爆燃、混合氣控制、熱負(fù)荷和增壓器的特殊要求等方面:(1)天然氣發(fā)動(dòng)機(jī)增壓后,由于進(jìn)氣溫度和壓力提高及燃燒受熱零件熱負(fù)荷升高等原因,將促使爆燃發(fā)生。這就要求增壓器體積小、耐高溫性能好、轉(zhuǎn)動(dòng)慣量小、效率高。采用排氣放氣閥是較為普遍的方案,為了確保低速性能,放氣點(diǎn)懸在發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩點(diǎn)處,發(fā)動(dòng)機(jī)高速工作時(shí),通過(guò)旁通閥放出渦輪前的一部分廢氣,以降低增壓器轉(zhuǎn)速和壓比來(lái)限制最高燃燒壓力。(2)采用可變截面渦輪增壓器。燃?xì)馔ㄟ^(guò)渦輪噴嘴葉片時(shí),根據(jù)柴油機(jī)外界負(fù)荷的變化來(lái)改變噴嘴環(huán)葉片的角度和當(dāng)量流通面積,使進(jìn)入渦輪葉片的氣流參數(shù)發(fā)生變化,從而達(dá)到渦輪增壓器與柴油機(jī)在各工況下有良好的匹配。發(fā)動(dòng)機(jī)低速時(shí),通過(guò)關(guān)小噴嘴換環(huán)減小渦輪流通截面積,使增壓壓力提高,從而改善發(fā)動(dòng)機(jī)的低速特性;發(fā)動(dòng)機(jī)高速時(shí),噴嘴環(huán)逐漸打開(kāi),渦輪流通截面積增大,使增壓壓力相對(duì)減小,解決增壓過(guò)量的問(wèn)題。渦輪增壓器由離心式壓氣機(jī)和廢氣渦輪組成。第三章 試驗(yàn)組織 試驗(yàn)條件在進(jìn)行性能試驗(yàn)時(shí),應(yīng)在以下大氣狀態(tài)下進(jìn)行:溫度():283K<T<313K [0℃=]氣壓():80kPa≤≤110 kPa當(dāng)試驗(yàn)的大氣狀態(tài)與標(biāo)準(zhǔn)大氣狀態(tài)(溫度=298K,干空氣壓=99 kPa)有差異時(shí),應(yīng)對(duì)實(shí)測(cè)功率進(jìn)行校正,對(duì)于天然氣發(fā)動(dòng)機(jī),有:=式中:——校正功率(即標(biāo)準(zhǔn)大氣狀態(tài)下的功率); ——校正系數(shù); ——實(shí)測(cè)功率為使試驗(yàn)有效,校正系數(shù)ad應(yīng)滿足:≤≤。方案:試驗(yàn)增壓器匹配試驗(yàn)分別在工況點(diǎn)3600 r/min、3200 r/min、2800 r/min、2400r/min、2000r/min、1600r/min、1200r/min、800r/min下的外特性點(diǎn),在測(cè)量的過(guò)程中同時(shí)記錄天然氣消耗量、扭矩、功率,節(jié)氣門位置調(diào)到最大位置,根據(jù)工況點(diǎn)順序,發(fā)動(dòng)機(jī)由高速向低速進(jìn)行,依次調(diào)節(jié)WE33水力測(cè)功機(jī)系統(tǒng)改變負(fù)荷,使發(fā)動(dòng)機(jī)在每一工況點(diǎn)穩(wěn)定運(yùn)行不少于1分鐘后,測(cè)量并記錄各個(gè)數(shù)據(jù)。1%杭州奕科機(jī)電技術(shù)有限公司水溫表EIM0301D測(cè)控儀177。如果情況異常,須重新采集。第四章 試驗(yàn)結(jié)果與分析增壓天然氣發(fā)動(dòng)機(jī)試驗(yàn)所用測(cè)功機(jī)為杭州奕科機(jī)電技術(shù)有限公司生產(chǎn)的WE33水力測(cè)功機(jī)。試驗(yàn)過(guò)程中以最高排氣溫度和最高增壓壓力為約束條件,考慮渦輪增壓器渦輪材料的耐溫限制,最高排氣溫度限制在720攝氏度以內(nèi),并且考慮發(fā)動(dòng)機(jī)的機(jī)械負(fù)荷和熱負(fù)荷限制。天然氣發(fā)動(dòng)機(jī)的規(guī)律調(diào)節(jié)主要通過(guò)調(diào)節(jié)節(jié)氣門開(kāi)度來(lái)實(shí)現(xiàn)。因此,VNT調(diào)節(jié)規(guī)律不僅與節(jié)氣門開(kāi)度有關(guān),也與發(fā)動(dòng)機(jī)的轉(zhuǎn)速有關(guān)。圖42 普通增壓天然氣發(fā)動(dòng)機(jī)與VNT增壓天然氣發(fā)動(dòng)機(jī)的負(fù)荷特性圖43 VNT調(diào)節(jié)規(guī)律與功率由圖42可見(jiàn),在中低負(fù)荷工況下,VNT增壓天然氣發(fā)動(dòng)機(jī)燃料消耗率低于普通增壓天然氣發(fā)動(dòng)機(jī),主要在于部分負(fù)荷工況下天然氣發(fā)動(dòng)機(jī)功率調(diào)節(jié)主要由節(jié)氣門開(kāi)度控制,節(jié)氣門部分開(kāi)啟時(shí),由于壓氣機(jī)及廢氣渦輪的存在增大了進(jìn)排氣阻力,使泵氣損失有所增加。VNT增壓天然氣發(fā)動(dòng)機(jī)隨著節(jié)氣門開(kāi)度的增大,輸出功率增加,當(dāng)節(jié)氣門增大到50%時(shí),輸出功率出現(xiàn)停滯時(shí),逐漸減小廢氣渦輪噴嘴環(huán)葉片開(kāi)度,使增壓器轉(zhuǎn)速上升,進(jìn)氣壓力提高,增壓天然氣發(fā)動(dòng)機(jī)在轉(zhuǎn)速為2000r/min時(shí),全負(fù)荷輸出的最大功率可達(dá)56kw,在機(jī)械失功率變化不多的情況下,由于高負(fù)荷下增壓天然氣發(fā)動(dòng)機(jī)的有效功率提高,因此機(jī)械效率提高,增壓天然氣發(fā)動(dòng)機(jī)的燃料消耗率降低。m提高到292 N綜上所述:(1) 可變噴嘴渦輪增壓器通過(guò)改變噴嘴環(huán)葉片的角度來(lái)調(diào)節(jié)渦輪噴嘴環(huán)流通截面,同時(shí)改變進(jìn)入渦輪葉片氣流的進(jìn)氣角,對(duì)廢氣有較好的引導(dǎo)作用,因此在整個(gè)工作范圍內(nèi)有較高的效率,并可擴(kuò)大低燃料消耗率運(yùn)行區(qū),提高發(fā)動(dòng)機(jī)的性能。m,改善了發(fā)動(dòng)機(jī)的動(dòng)力性和經(jīng)濟(jì)性。這里討論葉片擴(kuò)壓器與壓氣葉輪引起喘振的現(xiàn)象。由于氣流速度方向與設(shè)計(jì)工況的葉片方向(工作輪葉片和擴(kuò)壓器葉片)有偏差時(shí)就產(chǎn)生沖擊損失。對(duì)于進(jìn)口速度三角形是由和的改變而引起變化(見(jiàn)圖47;對(duì)于出口速度三角形是由或的改變而引起改變(見(jiàn)圖48)。從圖47及圖48中可以看出,壓氣機(jī)工作偏離設(shè)計(jì)工況以后,雖然在工作輪進(jìn)口葉片邊緣和擴(kuò)壓器中均產(chǎn)生漩渦,但其后果卻是不一樣的。隨著空氣流量進(jìn)一步減少,氣流的分離就愈加劇烈,當(dāng)氣流沖角i達(dá)到17176。(a)W1u1C1W1u1C1W1u1C1(b)(c)(a) 設(shè)計(jì)工況(b)大于設(shè)計(jì)工況(c)小于設(shè)計(jì)工況圖47當(dāng)轉(zhuǎn)速一定時(shí)空氣流量對(duì)工作輪內(nèi)氣流運(yùn)動(dòng)的影響W2R=C2Ri=0C+iiW1(a)(b)(c)(a)設(shè)計(jì)工況(b)大于設(shè)計(jì)工況(c)小于設(shè)計(jì)工況圖48 當(dāng)轉(zhuǎn)速一定時(shí)空氣流量對(duì)葉片式擴(kuò)壓器內(nèi)流運(yùn)動(dòng)的影響 改進(jìn)建議增壓器在發(fā)動(dòng)機(jī)上的安裝是一個(gè)必須引起重視的問(wèn)題,因?yàn)樗扔绊懙桨l(fā)動(dòng)機(jī)的性能(如安裝不合適,造成不必要的阻力就會(huì)影響性能)又影響到可靠性(如會(huì)造成震動(dòng)等)。 日常保養(yǎng)和使用由于增壓發(fā)動(dòng)機(jī)的增壓器安裝部位一般都在發(fā)動(dòng)機(jī)上部,進(jìn)排氣管之間。(2)應(yīng)經(jīng)常檢查、清洗增壓器的潤(rùn)滑系統(tǒng),以防止油管內(nèi)部機(jī)油結(jié)焦或破損,使增壓器得不到充分潤(rùn)滑而損壞。開(kāi)最小的油門啟動(dòng)發(fā)動(dòng)機(jī),數(shù)秒內(nèi)就可建起工作油壓,但是令增壓器在好的潤(rùn)滑狀態(tài)下進(jìn)行預(yù)熱是很有必要的。(7)保養(yǎng)后保養(yǎng)發(fā)動(dòng)機(jī)或增壓器之后,確保在增壓器的進(jìn)油口注入干凈機(jī)油直到加滿,對(duì)增壓器進(jìn)行預(yù)潤(rùn)滑。以上措施可以保證增壓器有良好的工作狀態(tài),使其不至于過(guò)早損壞而釀成大故障。壓氣機(jī)工作輪葉片和擴(kuò)壓器葉片的構(gòu)造角都是按一定的壓氣機(jī)轉(zhuǎn)速(一定的工作輪圓周速度)及空氣流量(相應(yīng)的空氣速度)來(lái)設(shè)計(jì)的,成為設(shè)計(jì)工況。特別是近年來(lái)世界各國(guó)對(duì)汽車排放法規(guī)控制越來(lái)越嚴(yán)格與能源危機(jī)的雙重壓力,促使人們采用增壓及中冷技術(shù)來(lái)提高天然氣發(fā)動(dòng)機(jī)的動(dòng)力性,降低車用天然氣發(fā)動(dòng)機(jī)的排氣污染,以達(dá)到更嚴(yán)格的排放法規(guī)要求。經(jīng)過(guò)分析確定VNT可變截面渦輪增壓器具有更佳的匹配效果。他不辭辛苦,在繁忙的工作抽出余暇給我提出建議,對(duì)試驗(yàn)過(guò)程和論文寫作過(guò)程都無(wú)不關(guān)心指導(dǎo)。感謝南昌恒天動(dòng)力機(jī)有限公司鐘曉琛工程師和鄒揚(yáng)寧工程師指導(dǎo)我完成試驗(yàn),特別感謝工程師給予的詳細(xì)講解和幫助。 (2) e Braking: Dry surface is concrete, wet surface is low friction Jennite pad. Minimum stopping distance from 62 mph (100 km/h) on dry surface, and from 31 mph (50 km/h) on wet surface with no wheels locked. Panic stops are minimum measured distance from 31 mph (50 km/h) on wet and dry surfaces at maximum pedal pressure with no attempt to steer. Values are average of six stops. Fuel Economy: City fuel economy determined using an urban driving cycle—a distance of 2 miles with 8 stops. Highway fuel economy used a 70 mph average driving cycle with no stops. The 150 mile trip alternated between urban and highway cycles until 150 miles was reached. Results are reported in 70% highway driving for total trip. Cold Start: Vehicle placed in a temperaturecontrolled room at 20176。F2015Crank time idle rating _4 sec 6Crank time idle rating 48 4Evaluation SummaryEvaluation results from a dedicated CNG Civic and a gasoline Civic showed very little difference in acceleration, and driveability and handling. Evaluators reported that both vehicles handled well, but that the gasoline control had slightly better acceleration. The trunk space is significantly reduced for the CNG Civic because the CNG fuel cylinder is installed in the trunk. During the braking tests on dry pavement the Civics performed nearly identically, but the CNG Civic outperformed the gasoline vehicle on the wet surface. This was not surprising since the gasoline Civic was not equipped with ABS, and the CNG Civic was. It is expected that performance for the wet braking tests would have been similar if both vehicles had ABS. The results revealed fuel economy as much as 8% higher for the CNG Civic pared to the gasoline Civic. Engine design changes, including operating at a higher pression ratio, likely contribute to higher overall efficiency and improved fuel economy of the CNG Civic. During cold start testing, the CNG Civic started at –20 degrees the first time, but failed to start in 2 subsequent tests. The test at –15 degrees was successful. The gasoline model started in both –20 degree tests. Emissions test results showed one of the biggest benefits of the CNG Civic. Although the emissions measured from both vehicles were low for the regulated constituents, those from the CNG Civic were at or below 1/10 the ULEV certification level. Emissions of potency weighted toxics (including: benzene, 1,3butadiene, formaldehyde, and acetaldehyde)* for the CNG Civic were 97% lower than that of the gasoline Civic.Firstly, parison of natural gas vehicle (CNG) fu