【摘要】定義域為(0,+∞).值域為R過點(1,0)減函數增函數01y=logax(a0且a≠1)定義域為R.值域為(0,+∞)性質過點(0,1)減函數增函數圖象01y=ax(a
2024-10-19 19:13
【摘要】(一)指數與指數函數1.根式(1)根式的概念n為奇數n為偶數(2).兩個重要公式①;②(注意必須使有意義)。2.有理數指數冪(1)冪的有關概念①正數的正分數指數冪:;②正數的負分數指數冪:③0的正分數指數冪等于0,0的負分數指數冪沒有意義.注:分數指數冪與根式可以互化,通常利用分數指數冪進行根式的運算。
2025-06-25 01:24
【摘要】教材:人教B版必修1使用時間:12月編制人:周桂林姜宗寶袁天印備課組長:【使用說明】1、課前完成預習學案,牢記基礎知識,掌握基本題型;2、認真限時完成,書寫規(guī)范;3、小組長在課上討論環(huán)節(jié)要在組內起引領作用,控制討論節(jié)奏;【學習目標】1、使學生能正確比較指數函數和對數函數性質關系,能以之為例對反函數
2025-06-25 01:26
【摘要】瑞英歷屆高考中的“指數函數和對數函數”試題精選1.(2022北京文)若372logπl(wèi)og6logbc???,,,則()(A)abc(B)bac(C)cab(D)bca2.(2022遼寧文)將函數21xy??的圖象按
2025-01-09 16:09
【摘要】指數與對數函數題型總結題型1指數冪、指數、對數的相關計算【例1】計算:3-2+103lg3+.【例2】計算下列各式的值:(1)lg-lg+lg;(2)lg25+lg8+lg5×lg20+(lg2)2.變式::(1)(lg5)2+2lg2-(lg2)2
2025-06-25 01:29
【摘要】函數函數函數函數問題1:指數函數y=ax與對數函數y=logax(a0,a≠1)有什么關系?稱這兩個函數互為反函數y=axx=logayy=logax指數換對數交換x,yy=3x+5交換x,y35??yx移項35??xy指數函數y=ax(a0
2024-11-23 12:38
【摘要】對數函數與指數函數的導數一、復習與引入:1.函數的導數的定義與幾何意義....,我們已經掌握了初等函數中的冪函數、三角函數的導數,但還缺少指數函數、對數函數的導數,而這就是我們今天要新學的內容.有了指數函數、對數函數的導數,也就解決了初等函
2025-05-15 02:15
【摘要】返回返回觀察下列函數圖像:(1)函數與在同一坐標系內的圖像.1()2xy?(2)函數與在同一坐標系內的圖像.2xy?2logyx?12logyx?底數互為倒數的指數函數圖像關于y軸對稱;
2025-05-14 22:21
2025-07-25 05:39
【摘要】一:指數求定義域=的定義域是________.3.?函數的圖象必經過定點??????????.4.?如果指數函數在上的最大值與最小值的差為,則實數???????
2025-06-25 17:00
【摘要】......指數函數對數函數計算題11、計算:lg5·lg8000+.翰林匯2、解方程:lg2(x+10)-lg(x+10)3=4.翰林匯3、解方程:2.翰林匯4、解方程:9
2025-06-25 17:01
【摘要】實數指數冪習題練習1、填空題(1)64的3次方根可以表示為,其中根指數為,被開方數為;(2)12的4次算術根可以表示為,其中根指數為,被開方數為;(3)38的平方根可以表示為,其中根
2024-11-18 23:13
【摘要】指數函數與對數函數一、實數指數冪1、實數指數冪:如果xn=a(n∈N且n>1),則稱x為a的n次方根。當n為奇數時,正數a的n次方根是一個正數,負數的n次方根是一個負數。這時,a的n次方根只有一個,記作。當n為偶數時,正數a的n次方根有兩個,它們互為相反數,分別記作,-。它們可以寫成±的形式。負數沒有(填“奇”或“偶”)次方根。例:填空:(1)、()3
2025-04-04 03:02
【摘要】2012屆高考數學專題復習專題1——指數函數、對數函數(文科),那么的取值范圍是 (A) (B) (C) (D),當時,設則 (A) ?。˙) ?。–) (D)3、設f(x)=,則的定義域為A.B.(-4,-1)(1,4)C.(-2,-1)(1,2)D.(-4,-2)(2,
2025-08-04 17:16
【摘要】指數函數與對數函數的解題策略:指數的運算性質:(1)(2)轉化為抽象函數(3)轉化為抽象函數(4)轉化為抽象函數指數函數的圖像與性質:圖像性質:(1)定義域RR(2)值域
2025-03-25 02:35