【正文】
就得到一個增量折扣的價格方案。在這里我們可以設在處,總量折扣價格是,增量折扣價格是。a) 關于的靈敏度分析,表 數(shù)值序號r(%)(105)11101907447221051952471431002000500032914952052534559021085774,隨著的不斷減小,、r都在不斷增大,而P1( )、P2()都在不斷減小,這跟我們的直觀感覺是一致的,即零售商的庫存成本越高,零售商就越不可能一次訂購過多的貨物,零售商的訂購批量越低,制造商自然就不會提高過高的數(shù)量折扣了;并且,當H1變化20%時,P1( )的變化大約2%,P2()的變化大約1%,可見H1的小幅度變化對折扣方案的影響不明顯。另外,我們比較上面的四個表的對應數(shù)值還可以發(fā)現(xiàn)下面兩個結(jié)論:1) A1和A2的變化對折扣和價格的影響相對于和的變化對折扣和價格的影響較小。這兩套方案都都能成功誘導零售商增加訂購批量以減少供應鏈的聯(lián)合固定成本和庫存成本。在第5章的結(jié)尾部分,我們通過一個數(shù)值的例子實現(xiàn)了模型中的價格方案,并對結(jié)果進行比較,我們發(fā)現(xiàn)增量數(shù)量折扣的價格方案至少好于總量數(shù)量折扣的價格方案,前者更能成功地誘導零售商增加訂購批量,并且對于供應鏈上占優(yōu)的制造商去考慮零售商的公平關切是很有意義的。這些需要以后的研究者們進行大量認真的研究了。參考文獻[1] Hadley, G., and Whitin, . Analysis of Inventory Systems [J].PrenticeHall, Englewood Cliffs, NJ, 1963, 62:323345.[2] Kuzdrall, ., Britney, . Total setup lot sizing with quantity discounts [J]. Decision Sciences, 1982, 13:101112.[3] Burwell, ., Dave, ., Fitzpatrick, ., and Roy, . An inventory model with planned shortages and price dependent demand [J].Decision Sciences, 1991, 22: 11871191.[4] Rubin, ., and Benton, . Jointly constrained order quantities with allunits discounts [J].Naval Research Logistics, 1991, 40:255278.[5] Beton, ., and Park, S. A classification of literature on determining the lot size under quantity discounts [J].European Journal of Operational Research, 1996, 92:219238.[6] Dolan, . A normative model of industrial buyer response to quantity discounts [J].Research Frontiers in Marketing: Dialogues and Directions, 1978, 2: 121125.[7] Crowther, . Rationale for quantity discounts [J].Harvard Business Review, 1964, 42:2127.[8] Oi, . A Disneyland dilemma [J].The Quarterly Journal of Economics, 1971, 85:7796.[9] Das, C. Some tips for discounts buyers [J].Production and Inventory Management, 1988, 29(2):2326.[10] Lal, R., and Staelin, R. An approach for developing an optimal discount pricing policy [J].Management Science, 1984, 30:15241539.[11] Monahan, . A quantity discount pricing model to increase vendor profits [J].Management Science, 1984, 30:720726.[12] Weng, . Channel coordination and quantity discounts [J].Management Science, 1995, 41:15091522.[13] Haksever, C. and Moussourakis, C. Determining order quantities in multiproduct inventory systems subject to multiple constraints and incremental discounts [J].European Journal of Operational Research, 2008, 184:930–945.[14] 黃潔剛. 存貯論原理及其應用[M]. 上海:上海科學技術文獻出版社,. 1100.[15] 清華大學《運籌學》編寫組. 運籌學[M]. 北京:清華大學出版社, . 343376.