【摘要】28.2解直角三角形第1課時,第一頁,編輯于星期六:七點七分。,1.使學生理解直角三角形中六個元素的關系,會運用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形.2.滲透數(shù)形結合的數(shù)學思想...
2024-10-21 21:46
【摘要】28.2解直角三角形第2課時,第一頁,編輯于星期六:七點七分。,1.了解仰角、俯角的概念,能應用銳角三角函數(shù)的知識解決有關實際問題.2.培養(yǎng)學生分析問題、解決問題的能力.,第二頁,編輯于星期六:七點七...
2024-10-25 02:22
【摘要】第二十八章銳角三角函數(shù)解直角三角形及其應用(3)一、新課引入1、直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B這五個元素間有哪些等量關系呢?(1)三邊之間的關系:a2+b2=c2(勾股定理)(2)兩銳角之間的關系:∠A+∠B=90°(3)邊角之間的關系:sin=
2025-06-19 12:01
【摘要】第二十八章銳角三角函數(shù)解直角三角形及其應用(2)一、新課引入1、直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B這五個元素間有哪些等量關系呢?(1)三邊之間的關系:a2+b2=c2(勾股定理)(2)兩銳角之間的關系:∠A+∠B=90°(3)邊角之間的關系:sin=
2025-06-19 12:00
【摘要】第二十八章銳角三角函數(shù)解直角三角形及其應用(1)一、新課引入1、在三角形中共有幾個元素?2、直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B這五個元素間有哪些等量關系呢?一般地,直角三角形中,除直角外,共有5個元素,即3條邊和2個銳角(1)三邊之間的關系:a2+b
【摘要】解直角三角形(4)1、如圖,在Rt△ABC中:22復習ABC(1)∠A=30°,AB=4,解這個直角三角形;(2)tanA=,求∠A的大小。導入如圖,有三個斜坡,其坡面與水平面的夾角分別為α、β、γ,且αβγ
2024-11-22 02:59
【摘要】 應用舉例(1)學前溫故新課早知由直角三角形中的已知元素,求出其余未知元素的過程,叫做 .?解直角三角形,視線與水平線的夾角叫做 ,從上往下看,視線與水平線的夾角叫做 .?為測樓房BC的高,在距樓房30m的A處測得樓頂B的仰角為α,則樓房BC的高
2025-06-19 12:03
【摘要】(A)0°<∠A<30°(B)30°<∠A<90°(C)0°<∠A<60°(D)60°<∠A<901.當∠A為銳角,且tanA的值大于時,∠A()B2.當∠A為銳角,且tanA的值小于時,∠
2024-11-21 00:14
【摘要】 應用舉例(2),視線與水平線的夾角叫做 ,從上往下看,視線與水平線的夾角叫做 .?實際問題時,可以直接或通過作輔助線,構造出直角三角形,化歸為解 的問題來解決.?學前溫故新課早知仰角俯角直角三角形識解決實際問題的一般過程是:(1)將
【摘要】 應用舉例(1),視線與水平線的夾角叫做 ,從上往下看,視線與水平線的夾角叫做 .?為測樓房BC的高,在距樓房30m的A處測得樓頂B的仰角為α,則樓房BC的高為 m.?實際問題時,可以直接或通過作輔助線,構造出直角三角形,化歸為解
2025-06-18 12:03
【摘要】 應用舉例(2)識解決實際問題的一般過程是:(1)將實際問題抽象為 (畫出平面圖形,轉化為 的問題);?(2)根據(jù)問題中的條件,適當選用銳角三角函數(shù)等 ;?(3)得到 的答案;?(4)得到 的答案.&
【摘要】銳角三角形直角三角形鈍角三角形——有一個角是鈍角。三角形按角的分類——三個角都是銳角?!幸粋€角是直角。你能舉出生活中用到直角三角形的例子嗎?直角三角形用Rt△表示,如圖記作Rt△ABC,ACB直角邊斜邊直角邊∠C=Rt∠直角三角形
2025-08-01 14:23
【摘要】.......九上第一章 銳角三角函數(shù)與解直角三角形考綱要求命題趨勢1.理解銳角三角函數(shù)的定義,掌握特殊銳角(30°,45°,60°)的三角函數(shù)值,并會進行計算.2.掌握直角三角形邊
2025-06-22 19:54
【摘要】§解直角三角形(1)復習30°、45°、60°角的正弦值、余弦值和正切值如下表:銳角a三角函數(shù)30°45°60°sinacosatana1222322212332
2024-11-21 04:44
【摘要】在Rt△ABC中,∠C=90°,根據(jù)下列條件解直角三角形;(1)a=30,b=20;(2)∠B=72°,c=14.ABCb=20a=30c(2)兩銳角之間的關系∠A+∠B=90°(3)邊角之間的關系caAA???斜邊的對邊s
2024-11-21 06:18