【摘要】第14章勾股定理單元綜合復(fù)習(xí)(四)勾股定理命題點(diǎn)有關(guān)勾股定理的計(jì)算與求值1.如圖所示,將長方形ABCD沿直線BD折疊,使點(diǎn)C落在點(diǎn)C′處,BC′交AD于點(diǎn)E,AD=8,AB=4,求△BED的面積.解:∵AD∥BC,∴∠2=∠3.∵△BC′D
2025-06-14 18:49
2025-06-14 16:14
【摘要】第14章勾股定理微專題6勾股定理及其逆定理的綜合應(yīng)用專題解讀勾股定理及其逆定理揭示了直角三角形的三邊的數(shù)量關(guān)系,在實(shí)際生活中應(yīng)用廣泛,在解題時(shí)注意將實(shí)際問題轉(zhuǎn)化為直角三角形問題,利用勾股定理解決.專題訓(xùn)練類型1勾股定理與格點(diǎn)多邊形1.如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,請按要
2025-06-19 06:52
2025-06-17 07:30
【摘要】第14章勾股定理勾股定理反證法1.不易用直接證法證明的簡單問題,要用法.2.反證法的證明步驟是:先假設(shè)結(jié)論的是正確的;然后通過演繹推理,推出與基本事實(shí)、已證的定理、定義或已知條件相矛盾,從而說明不成立,進(jìn)而得出正確.反證反面假設(shè)原
2025-06-19 04:14
2025-06-17 07:45
【摘要】第一章勾股定理1探索勾股定理2022秋季數(shù)學(xué)八年級上冊?B認(rèn)識勾股定理直角三角形兩直角邊的等于斜邊的,如果用a、b、c分別表示直角三角形的兩直角邊和斜邊,那么.自我診斷1.1.在△ABC中,∠C=90°,a、
2025-06-20 20:23
【摘要】第一章勾股定理專題突破一勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級上冊?B類型1利用勾股定理求線段長1.在△ABC中,AB=AC=5,BC=6.若點(diǎn)P在邊AC上移動(dòng),求BP最小值是多少?解:過A作AD⊥BC于D,∵AB=AC=5,BC=6
2025-06-19 18:04
2025-06-21 05:34
【摘要】期末總復(fù)習(xí)四、勾股定理2022秋季數(shù)學(xué)八年級上冊?HS【重難點(diǎn)剖析】重點(diǎn)1.勾股定理【例1】在Rt△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,若AC=6,BC=8,求BD的長.解:在Rt△ABC中,AB2=AC2+BC2
2025-06-12 22:08
【摘要】第14章勾股定理勾股定理2022秋季數(shù)學(xué)八年級上冊?HS如果三角形的三邊長a、b、c有關(guān)系,那么這個(gè)三角形是直角三角形,且為斜邊長,這稱為勾股定理的逆定理.自我診斷1.在△ABC中,BC=1,AC=2,當(dāng)AB=時(shí),∠B=90
2025-06-14 13:38
2025-06-12 21:55
2025-06-14 12:41
【摘要】反證法乙:這不可能,5月4號上午還看見你和丙在長安街逛街呢!甲:在五一長假里,我和爸爸、媽媽去新加坡玩了整整6天,真是太高興了.丙:是啊,5月4號我確實(shí)和甲在長安街逛街!假設(shè)甲去新加坡玩了6天,乙:甲沒有去新加坡玩了6天.那么甲從5月1號至6號或是2號至7號在新加坡,即5月4號甲
2025-06-12 01:47