【摘要】智能算法及其在數(shù)學(xué)建模中的應(yīng)用計算智能簡介人工神經(jīng)網(wǎng)絡(luò)及應(yīng)用支持向量機(jī)及應(yīng)用模糊集及應(yīng)用遺傳算法及應(yīng)用單元一智能算法簡介?智能的層次生物智能(BI)符號智能(SI)計算智能(CI)人工智能(AI)?最高層次的智能是生物智能(BiologicalIntelligen
2025-01-05 03:14
【摘要】1神經(jīng)網(wǎng)絡(luò)與應(yīng)用11月16日2第六章BP網(wǎng)絡(luò)3BP網(wǎng)基本概念?目前實際應(yīng)用中最常用?采用(BackPropagation-BP)學(xué)習(xí)算法?多層前饋型神經(jīng)網(wǎng)絡(luò)?隱藏層神經(jīng)元傳遞函數(shù)為S型函數(shù)?可以解決非線性問題?用于函數(shù)逼近、模式識別和數(shù)據(jù)壓縮等4BP神經(jīng)元
2025-07-21 23:39
【摘要】計算機(jī)網(wǎng)絡(luò)教程計算機(jī)網(wǎng)絡(luò)教程編譯:司海飛《計算機(jī)網(wǎng)絡(luò)》課程是計算機(jī)應(yīng)用專業(yè)必修的一門專業(yè)課程。學(xué)生在學(xué)習(xí)本課程之前最好應(yīng)當(dāng)具有計算機(jī)組成原理和計算機(jī)操作系統(tǒng)的預(yù)備知識。本課程的任務(wù)是:清晰的概念
2024-10-09 15:10
【摘要】1研究生課程期終論文課程名稱:神經(jīng)網(wǎng)絡(luò)設(shè)計任課教師:彭洪論文題目:基于遺傳-BP神經(jīng)網(wǎng)絡(luò)的手寫數(shù)字識別姓名:
2025-06-05 07:07
【摘要】31一個說明性實例32蘋果/香蕉分類器分類器傳感器神經(jīng)網(wǎng)絡(luò)33標(biāo)準(zhǔn)向量模式pshapetextureweight=p2111–=標(biāo)準(zhǔn)香蕉模式標(biāo)準(zhǔn)蘋果模式形狀:{1:圓形;-1:非圓形}質(zhì)地
2025-05-26 18:04
【摘要】武漢科技大學(xué)1張凱副教授武漢科技大學(xué)計算機(jī)學(xué)院人工神經(jīng)網(wǎng)絡(luò)(ArtificalNeuralNetwork)2第一章神經(jīng)網(wǎng)絡(luò)概述1.人工智能與神經(jīng)網(wǎng)絡(luò)2.人工神經(jīng)網(wǎng)絡(luò)的基本概念3.人工神經(jīng)網(wǎng)絡(luò)研究的歷史4.人工神經(jīng)網(wǎng)絡(luò)的應(yīng)用領(lǐng)域人工智能?人工智能(Ar
2025-05-26 02:15
【摘要】RBF網(wǎng)絡(luò)特點?只有一個隱層,且隱層神經(jīng)元與輸出層神經(jīng)元的模型不同。?隱層節(jié)點激活函數(shù)為徑向基函數(shù),輸出層節(jié)點激活函數(shù)為線性函數(shù)。?隱層節(jié)點激活函數(shù)的凈輸入是輸入向量與節(jié)點中心的距離(范數(shù))而非向量內(nèi)積,且節(jié)點中心不可調(diào)。?隱層節(jié)點參數(shù)確定后,輸出權(quán)值可通過解線性方程組得到。?隱層節(jié)點的非線性變換把線性不可分問題轉(zhuǎn)化為線性可分問題。
2025-05-28 01:54
【摘要】神經(jīng)網(wǎng)絡(luò)?生物神經(jīng)元?人工神經(jīng)元模型?人工神經(jīng)網(wǎng)絡(luò)模型神經(jīng)生理學(xué)和神經(jīng)解剖學(xué)的研究結(jié)果表明,神經(jīng)元(Neuron)是腦組織的基本單元,是人腦信息處理系統(tǒng)的最小單元。?生物神經(jīng)元?生物神經(jīng)網(wǎng)絡(luò)1、人工神經(jīng)網(wǎng)絡(luò)的生物學(xué)基礎(chǔ)生物神經(jīng)元在結(jié)構(gòu)上由:細(xì)胞體(Cellbody)、
2025-01-04 14:41
【摘要】第十一章人工神經(jīng)網(wǎng)絡(luò)建模(ArtificialNeuronNets)?一、引例?1981年生物學(xué)家格若根(W.Grogan)和維什(W.Wirth)發(fā)現(xiàn)了兩類蚊子(或飛蠓midges).他們測量了這兩類蚊子每個個體的翼長和觸角長,數(shù)據(jù)如下:?翼長觸角長類別?
2025-01-04 04:53
【摘要】INSTITUTEOFCOMPUTINGTECHNOLOGY2022/2/21神經(jīng)信息學(xué)脈沖耦合神經(jīng)網(wǎng)絡(luò)史忠植中科院計算所INSTITUTEOFCOMPUTINGTECHNOLOGY2022/2/22脈沖耦合神經(jīng)網(wǎng)絡(luò)隨著生物神
2025-01-08 06:15
【摘要】——蚊子分類問題?正向傳播:?輸入樣本---輸入層---各隱層---輸出層?判斷是否轉(zhuǎn)入反向傳播階段:?若輸出層的實際輸出與期望的輸出(教師信號)不符?誤差反傳?誤差以某種形式在各層表示----修正各層單元的權(quán)值?網(wǎng)絡(luò)輸出的誤差減少到可接受的程度或達(dá)到預(yù)先設(shè)定的學(xué)習(xí)次數(shù)為止一、BP網(wǎng)絡(luò)的標(biāo)準(zhǔn)
2025-05-25 22:33
【摘要】智能中國網(wǎng)提供學(xué)習(xí)支持BP神經(jīng)網(wǎng)絡(luò)模型與學(xué)習(xí)算法概述?Rumelhart,McClelland于1985年提出了BP網(wǎng)絡(luò)的誤差反向后傳BP(BackPropagation)學(xué)習(xí)算法?BP算法基本原理?利用輸出后的誤差來估計輸出層的直接前導(dǎo)層的誤差,再用這個誤差估計更前一層的誤差,如此一層一層的反
【摘要】神經(jīng)網(wǎng)絡(luò)概述人工神經(jīng)網(wǎng)絡(luò)ANN(artificialneuralwork)是20世紀(jì)80年代才日益受到人們重視的一種新的人工智能計算方法。由于它模擬了人腦的思維模式,即具有一定的智能,且的確能解決許多用傳統(tǒng)方法不能或難于解決的復(fù)雜問題,使之更加精確化,如更精確的分類、非線性規(guī)劃的求解、著名的“旅行員推銷問題”的解決等(注:在近年來的實際應(yīng)用
【摘要】121反向傳播算法的變形122BP算法的缺點?算法的收斂速度很慢?可能有多個局部極小點?BP網(wǎng)絡(luò)的隱層神經(jīng)元個數(shù)的選取尚無理論上的指導(dǎo),而是根據(jù)經(jīng)驗選取?BP網(wǎng)絡(luò)是一個前向網(wǎng)絡(luò),具有非線性映射能力,但較之非線性動力學(xué)系統(tǒng),功能上有其局限性123BP算法的變形?啟發(fā)式改進(jìn)–動量
2025-01-04 16:17
【摘要】機(jī)器學(xué)習(xí)人工神經(jīng)網(wǎng)絡(luò)(ANN)概述?人工神經(jīng)網(wǎng)絡(luò)提供了一種普遍且實用的方法從樣例中學(xué)習(xí)值為實數(shù)、離散值或向量的函數(shù)?反向傳播算法,使用梯度下降來調(diào)節(jié)網(wǎng)絡(luò)參數(shù)以最佳擬合由輸入-輸出對組成的訓(xùn)練集合?人工神經(jīng)網(wǎng)絡(luò)對于訓(xùn)練數(shù)據(jù)中的錯誤健壯性很好?人工神經(jīng)網(wǎng)絡(luò)已被成功應(yīng)用到很多領(lǐng)域,例如視覺場景分析,語音識別,機(jī)器人控制簡
2024-10-18 23:31