【摘要】ERP的核心--線性規(guī)劃模型? 1982年,以美國(guó)布魯克海文國(guó)家試驗(yàn)室與德國(guó)玉立希核研究中心牽頭的多國(guó)能源系統(tǒng)協(xié)作項(xiàng)目大功告成,它為西方國(guó)家制定能源政策、化解由于石油價(jià)格暴漲所產(chǎn)生的能源危機(jī)做出了不可估量的貢獻(xiàn)。該項(xiàng)目的目的是評(píng)價(jià)能源新工藝在未來(lái)國(guó)家級(jí)能源系統(tǒng)中的作用。毫無(wú)疑問(wèn),這樣的評(píng)價(jià)需要建立一個(gè)通用的計(jì)算機(jī)化的模型。經(jīng)認(rèn)真考慮和多方比較,他們一致選擇了多周期的線性規(guī)劃模
2025-05-29 22:26
【摘要】MaxZ=CX.AX=bX?0基,基解,基可行解,可行基?!丫€性規(guī)劃問(wèn)題的可行域D是凸集?!秧旤c(diǎn)與基可行解相對(duì)應(yīng)⊙線性規(guī)劃問(wèn)題的最優(yōu)解,必定在D的頂點(diǎn)上達(dá)到?!涯繕?biāo)函數(shù)在多個(gè)頂點(diǎn)
2025-10-07 21:34
【摘要】用MATLAB軟件解線性規(guī)劃范例用MATLAB軟件解線性規(guī)劃范例用MATLAB軟件解線性規(guī)劃范例用MATLAB軟件解線性規(guī)劃范例用MATLAB軟件解線性規(guī)劃范例用MATLAB軟件解線性規(guī)劃范例用MATLAB軟件解線性規(guī)劃范例第三章物流經(jīng)濟(jì)量的最值及導(dǎo)數(shù)方法函數(shù)函數(shù)函數(shù)函
2025-11-28 22:06
【摘要】由關(guān)于x,y的一次不等式形成的約束條件由關(guān)于兩個(gè)變量x,y一次式形成的函數(shù)在線性約束條件下求線性目標(biāo)函數(shù)的最大值或最小值問(wèn)題滿足線性約束條件的解(x,y)叫可行解由所有可行解組成的集合叫可行域使目標(biāo)函數(shù)取得最大或最小值的可行解叫線性規(guī)劃問(wèn)題的最優(yōu)解
2025-08-05 10:36
【摘要】線性規(guī)劃和非線性規(guī)劃實(shí)驗(yàn)?zāi)康?1)了解最優(yōu)化問(wèn)題的基本結(jié)構(gòu)和基本建模方法;?2)線性規(guī)劃的求解方法;?3)非線性規(guī)劃的求解方法.一,優(yōu)化問(wèn)題的普遍性以及引例1,無(wú)處不在的優(yōu)化?每一個(gè)人,高致總統(tǒng)首相,總裁經(jīng)理,平民百姓,無(wú)不在做決策:該做什么,該怎么做,才能有最好的效果??甚至自然中的動(dòng)植物
2025-01-15 06:08
【摘要】線性規(guī)劃及其對(duì)偶問(wèn)題1線性規(guī)劃問(wèn)題及其數(shù)學(xué)模型2線性規(guī)劃問(wèn)題的圖解法3單純形法4對(duì)偶問(wèn)題5EXCEL求解線性規(guī)劃6靈敏度分析1線性規(guī)劃問(wèn)題及其數(shù)學(xué)模型(1)線性規(guī)劃問(wèn)題例、生產(chǎn)組織與計(jì)劃問(wèn)題A,B各生產(chǎn)多少,可獲最大利潤(rùn)?可用資源煤勞動(dòng)力倉(cāng)庫(kù)A
2025-04-30 05:22
【摘要】第1頁(yè)DualityTheory?線性規(guī)劃的對(duì)偶問(wèn)題?對(duì)偶問(wèn)題的經(jīng)濟(jì)解釋——影子價(jià)格?對(duì)偶單純形法第二章線性規(guī)劃的對(duì)偶理論?靈敏度分析?對(duì)偶問(wèn)題的基本性質(zhì)第2頁(yè)?線性規(guī)劃的對(duì)偶問(wèn)題DualityTheory?對(duì)偶問(wèn)題的經(jīng)濟(jì)解釋——影子價(jià)格?對(duì)偶單純形法?靈敏度
2025-11-29 11:40
【摘要】
2025-11-03 19:03
【摘要】551ABCOxy解線性規(guī)劃問(wèn)題的步驟:(2)移:在線性目標(biāo)函數(shù)所表示的一組平行線中,利用平移的方法找出與可行域有公共點(diǎn)且縱截距最大或最小的直線;(3)求:通過(guò)解方程組求出最優(yōu)解;(4)答:作出答案。(1)畫:畫出線性約束條件所表示的可行域;例1
2025-10-31 08:03
【摘要】1線性規(guī)劃模式LinearProgrammingModelsChapter32?線性規(guī)劃模型(LinearProgrammingmodel)是在一組「線性」的限制式(asetoflinearconstraints)之下,尋找極大化(maximize)或極小化(minimize)一個(gè)特定的目標(biāo)函數(shù)(objectivefun
2025-10-02 11:08
【摘要】1線性規(guī)劃的對(duì)偶問(wèn)題的例子某工廠生產(chǎn)A,B兩種產(chǎn)品,已知制造A產(chǎn)品每件需勞動(dòng)力7人,原料5公斤,電力2度。制造B產(chǎn)品每件需勞動(dòng)力5人,原料8公斤,電力5度,工廠可使用的勞動(dòng)力最多為3500人,原料最多為4000公斤,電力最多為2022度,A產(chǎn)品每件利潤(rùn)6元,B產(chǎn)品每件利潤(rùn)7元,問(wèn)如何安排生產(chǎn),才使工廠的利潤(rùn)最大?2線性規(guī)劃
2025-08-05 19:07
【摘要】題型一求線性目標(biāo)函數(shù)的最值—截距型線性規(guī)劃問(wèn)題的基本解法是圖解法,解好線性規(guī)劃問(wèn)題的關(guān)鍵是畫好平面區(qū)域,找到目標(biāo)點(diǎn).例1若變量x,y滿足???????2x+y≤40x+2y≤50x≥0y≥0,求z=3x+2y的最大值.【分析】解答本
2025-08-05 15:24
【摘要】xyo山東省單縣一中劉允忠第一節(jié)二元一次不等式表示平面區(qū)域提出問(wèn)題——引入新課解決問(wèn)題——猜想證明典型例題分析與練習(xí)課堂小結(jié)與課外作業(yè)在平面直角坐標(biāo)系中,點(diǎn)的集合{(x,y)|x-y+1=0}表示什么圖形?想一想?
2025-11-08 19:18
【摘要】在建立數(shù)學(xué)模型并求解的同時(shí),要結(jié)合實(shí)際應(yīng)用!課程的實(shí)質(zhì)學(xué)習(xí)管理科學(xué)方法的基本思路?一、建立問(wèn)題的數(shù)學(xué)模型?二、求問(wèn)題的解?三、問(wèn)題的靈敏度分析運(yùn)籌帷幄之中決勝千里之外線性規(guī)劃模型的應(yīng)用LinearProgram
2025-10-10 01:20
【摘要】xyo220xy??0000xyxyxyxy???????????????或yxO第二節(jié)可行域上的最優(yōu)解作出不等式組表示的平面區(qū)域???????????1255334xyxyxXO
2025-11-02 21:08