【摘要】課題:線段、角是軸對稱性(1)教學(xué)目標(biāo):1、經(jīng)歷探索線段的軸對稱性的過程,進(jìn)一步體驗(yàn)軸對稱的特征,發(fā)展空間觀念;2、探索并掌握線段的垂直平分線的性質(zhì);3、了解線段的垂直平分線是具有特殊性質(zhì)的點(diǎn)的集合;4、在“操作——探究——?dú)w納——說理”的過程中學(xué)會有條理地思考和表達(dá),提高演繹推理能力。教學(xué)重點(diǎn):
2024-12-08 21:15
【摘要】圓的對稱性復(fù)習(xí)提問:1、什么是軸對稱圖形?我們在學(xué)過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對稱圖形呢?.圓的對稱性圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能
2024-10-18 06:59
【摘要】九年級下冊第三章圓的對稱性.,圓心角、弦、弧中有一個量相等就可以推出其他的兩個量對應(yīng)相等,以及它們在解題中的應(yīng)用.一、圓的對稱性說一說(1)圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能找到多少條對稱軸?(2)你是怎么得出結(jié)論的?圓的對稱性:
2025-05-06 23:23
【摘要】第五節(jié)晶體的對稱性本節(jié)主要內(nèi)容:對稱性與對稱操作晶系和布拉維原胞對稱性與對稱操作對稱操作所依賴的幾何要素。),,(321xxxX????經(jīng)過某一對稱操作,把晶體中任一點(diǎn)變?yōu)榭梢杂?/span>
2024-11-03 22:40
【摘要】圓的對稱性(二)白銀十中李再義教學(xué)目標(biāo):(1)理解圓的旋轉(zhuǎn)不變性,掌握圓心角、弧、弦、弦心距之間關(guān)系定理推論及應(yīng)用;(2)培養(yǎng)學(xué)生實(shí)驗(yàn)、觀察、發(fā)現(xiàn)新問題,探究和解決問題的能力;(3)通過教學(xué)內(nèi)容向?qū)W生滲透事物之間可相互轉(zhuǎn)化的辯證唯物主義教育,滲透圓的內(nèi)在美(圓心
2024-11-23 13:04
【摘要】對稱與破缺西安電子科技大學(xué)對性與破缺一、對稱性的概念源于生活日常生活中常說的對稱性,是指物體或一個系統(tǒng)各部分之間的適當(dāng)比例、平衡、協(xié)調(diào)一致,從而產(chǎn)生一種簡單性和美感。這種美來源于幾何確定性,來源于群體與個體的有機(jī)結(jié)合。對稱性概念源于生活人體、動植物結(jié)構(gòu)對稱天竺
2025-08-05 05:48
【摘要】第十二章分子的對稱性對稱操作:物體變換,其最后的位置與最初位置是物理上不可分辨的,以及物體中各對的點(diǎn)的距離保持不變;對稱元素與對稱操作的區(qū)別:對稱元素是一個幾何上存在的物,相對于它的是進(jìn)行一個對稱操作。對稱元素:旋轉(zhuǎn)軸對稱操作:旋轉(zhuǎn)對稱元素與對稱操作分子中的四類對稱操作及相應(yīng)的對稱元素如下
2025-01-14 09:01
【摘要】 線段、角的對稱性(1) 線段、角的對稱性(1)在一張薄紙上畫一條線段AB,操作并思考:線段是軸對稱圖形嗎?做一做線段是軸對稱圖形,它的對稱軸在哪里?為什么?想一想線段是軸對稱圖形,線段的垂直平分線是它的對稱軸. 線段、角的對稱性(1)想一想1.如圖,在線段AB的垂直平分線l上任意找一點(diǎn)P,連接PA、PB,
2025-06-06 05:28
【摘要】一.晶體的宏觀對稱性2.宏觀對稱元素的組合和32個點(diǎn)群晶體的對稱性有宏觀對稱性和微觀對稱性之分,前者指晶體的外形對稱性,后者指晶體微觀結(jié)構(gòu)的對稱性。本節(jié)我們主要學(xué)習(xí)晶體的宏觀對稱性。主要內(nèi)容:1.晶體的宏觀對稱元素4.十四種空間點(diǎn)陣3.特征對稱元素與7個晶系hnncs??????
2024-10-12 14:14
【摘要】晶體結(jié)構(gòu)的對稱性平移操作______周期平移T,分?jǐn)?shù)周期平移T/n晶體操作點(diǎn)操作(至少一點(diǎn)不動)_____旋轉(zhuǎn)、反演
2025-08-05 17:57
【摘要】觀察與思考如圖,△ABC中,如果過一邊上任一點(diǎn)D,作另一邊的平行線DE,截去一個角后,所得的是什么四邊形?一組對邊平行,另一組對邊不平行的四邊形叫做梯形.你能由等腰三角形得到等腰梯形嗎?AEBCDEBCD在梯形中,平行的邊稱為底,短的為上底,長的為下底,不平行的邊稱為腰,底和腰的
2024-11-09 05:34
【摘要】圓的對稱性2之垂徑定理CDM└●OAB圓是對稱圖形,它有哪些對稱性?既是對稱軸旋轉(zhuǎn)中心直徑所在直線圓心幾條?幾度?無數(shù)條任意角度軸對稱又是中心對稱將圖中的扇形AOB繞點(diǎn)O逆時針旋轉(zhuǎn)某個角度。對比前后兩個圖形,我們發(fā)
2025-07-18 18:05
【摘要】課題:圓的軸對稱性(1)教學(xué)目標(biāo)1.使學(xué)生理解圓的軸對稱性.2.掌握垂徑定理.3.學(xué)會運(yùn)用垂徑定理解決有關(guān)弦、弧、弦心距以及半徑之間的證明和計(jì)算問題.教學(xué)重點(diǎn)垂徑定理是圓的軸對稱性的重要體現(xiàn),是今后解決有關(guān)計(jì)算、證明和作圖問題的重要依據(jù),它有著廣泛的應(yīng)用,因此,本節(jié)課的教學(xué)重點(diǎn)是:垂徑定理及其應(yīng)用.教學(xué)難點(diǎn)
2024-11-20 02:16
【摘要】第四章分子對稱性Chapter4.MolecularSymmetryandIntroductiontoGroupTheory對稱性概念分子中的對稱操作與對稱元素分子點(diǎn)群分子對稱性與偶極矩、旋光性的關(guān)系分子的對稱性與偶極矩分子的對稱性與旋光性Conte
2025-05-02 12:08
【摘要】第三節(jié)晶體的對稱性和分類本節(jié)主要內(nèi)容:一、晶體的宏觀對稱性和宏觀對稱操作二、晶體的微觀對稱性和微觀對稱操作三、群和晶體結(jié)構(gòu)的分類物體的性質(zhì)在不同方向或位置上有規(guī)律地重復(fù)出現(xiàn)的現(xiàn)象稱為對稱性對稱性的本質(zhì)是指系統(tǒng)中的一些要素是等價(jià)的,它可使復(fù)雜物理現(xiàn)象的描述變得簡單、明了。因?yàn)閷ΨQ性越高的系統(tǒng),需要獨(dú)立表征的系
2025-04-29 12:01