【摘要】空間幾何體知識(shí)點(diǎn)總結(jié)一、空間幾何體的結(jié)構(gòu)特征1.柱、錐、臺(tái)、球的結(jié)構(gòu)特征由若干個(gè)平面多邊形圍成的幾何體稱之為多面體。圍成多面體的各個(gè)多邊形叫叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做頂點(diǎn)。把一個(gè)平面圖形繞它所在平面內(nèi)的一條定直線旋轉(zhuǎn)形成的封閉幾何體稱之為旋轉(zhuǎn)體,其中定直線稱為旋轉(zhuǎn)體的軸。(1)柱棱柱:一般的,有兩個(gè)面互相平行,其余各面都是四邊形,
2025-04-04 05:14
【摘要】立體幾何題型歸類總結(jié)一、考點(diǎn)分析基本圖形1.棱柱——有兩個(gè)面互相平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。①★②四棱柱底面為平行四邊形平行六面體側(cè)棱垂直于底面直平行六面體底面為矩形長(zhǎng)方體底面為正方形正四棱柱側(cè)棱與底面邊長(zhǎng)相等正方體
2025-04-04 03:19
【摘要】新課標(biāo)立體幾何解析幾何??碱}匯總1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。證明:在中,∵分別是的中點(diǎn)∴同理,∴∴四邊形是平行四邊形。(2)90°30°
2025-07-23 11:22
【摘要】高中數(shù)學(xué)《立體幾何》大題及答案解析(理)1.(2009全國(guó)卷Ⅰ)如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。2.(2009全國(guó)卷Ⅱ)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二
2025-06-18 13:50
【摘要】集合一定義集合是高中數(shù)學(xué)中最原始的不定義的概念,只給出描述性的說明。某些確定的且不同的對(duì)象集在一起就成為集合。組成集合的對(duì)象叫做元素。二集合的抽象表示形式用大寫字母A,B,C……表示集合;用小寫字母a,b,c……表示元素。三元素與集合的關(guān)系有屬于,不屬于關(guān)系兩種。元素a屬于集合A,記作;元素a不屬于集合A,記作。四幾種集合的命名有限集:含有有限個(gè)元
2025-01-14 11:09
【摘要】教學(xué)設(shè)計(jì)方案XueDaPPTSLearningCenter立體幾何知識(shí)點(diǎn)整理(文科)一.直線和平面的三種位置關(guān)系:1.線面平行符號(hào)表示:2.線面相交符號(hào)表示:3.線在面內(nèi)符號(hào)表示:二.平行關(guān)系:1.線線平行:方法一:用線面平行實(shí)現(xiàn)。方法二:用面面平行實(shí)現(xiàn)。
2025-08-08 12:27
【摘要】 高中數(shù)學(xué)立體幾何部分錯(cuò)題精選一、選擇題:1.(石莊中學(xué))設(shè)ABCD是空間四邊形,E,F(xiàn)分別是AB,CD的中點(diǎn),則滿足()A共線B共面C不共面D可作為空間基向量正確答案:B錯(cuò)因:學(xué)生把向量看為直線。2.(石莊中學(xué))在正方體ABCD-ABCD,O是底面ABCD的中心,M、N分別是棱DD、DC的中點(diǎn),則直線OM(
2025-01-14 09:02
【摘要】立體幾何-平行與垂直練習(xí)題1.空間四邊形SABC中,SO平面ABC,O為ABC的垂心,求證:(1)AB平面SOC(2)平面SOC平面SAB2.如圖所示,在正三棱柱ABC-A1B1C1中,E,M分別為BB1,A1C的中點(diǎn),求證:(1)EM平面AA1C1C;(2)平面A1EC平面AA1C1C;3.如圖,矩形ABCD中,AD⊥平面ABE,BE=BC,F為C
【摘要】立體幾何??甲C明題匯總考點(diǎn)1:證平行(利用三角形中位線),異面直線所成的角已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角??键c(diǎn)2:線面垂直,面面垂直的判定如圖,已知空間四邊形中,,是的中點(diǎn)。
【摘要】.WORD格式整理..高中數(shù)學(xué)《立體幾何》大題及答案解析(理)1.(2009全國(guó)卷Ⅰ)如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。2.(2009全國(guó)卷Ⅱ)如圖,直三棱柱ABC-A1B1
2025-06-24 05:29
【摘要】江蘇省射陽縣盤灣中學(xué)高中數(shù)學(xué)立體幾何復(fù)習(xí)(第1課時(shí))教案蘇教版必修2復(fù)習(xí)目標(biāo):理解并掌握平面的基本性質(zhì);理解三個(gè)公理,掌握“文字語言”、“符號(hào)語言”、“圖形語言”三種語言之間的轉(zhuǎn)化;能利用公理及推論找出兩個(gè)平面的交線及有關(guān)“三線共點(diǎn)”、“三點(diǎn)共線”、“點(diǎn)線共面”問題的簡(jiǎn)單證明。一、基礎(chǔ)訓(xùn)練:1、若三個(gè)平面把空間分成6個(gè)部分,那么這三個(gè)平
2024-11-19 23:14
【摘要】江蘇省射陽縣盤灣中學(xué)高中數(shù)學(xué)立體幾何復(fù)習(xí)(第3課時(shí))教案蘇教版必修2復(fù)習(xí)目標(biāo):理解并掌握直線與平面垂直的判定定理及性質(zhì)定理、平面與平面垂直的判定定理及性質(zhì)定理。能抓住線線垂直、線面垂直、面面垂直之間的轉(zhuǎn)化關(guān)系解決有關(guān)垂直問題;會(huì)求簡(jiǎn)單的二面角的平面角問題。注重滲透化歸與轉(zhuǎn)化的數(shù)學(xué)思想一、基礎(chǔ)訓(xùn)練:1、若直線a與平面?不垂直,那么在平面
【摘要】一、判定兩線平行的方法1、平行于同一直線的兩條直線互相平行2、垂直于同一平面的兩條直線互相平行3、如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線就和交線平行4、如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行5、在同一平面內(nèi)的兩條直線,可依據(jù)平面幾何的定理證明二、判定線面平行的方法1、據(jù)定義:如果一條直線和一個(gè)平面沒有
2025-04-16 23:21
【摘要】......立體幾何核心知識(shí)點(diǎn)梳理江蘇省靖江高級(jí)中學(xué)蔡正偉一、考試內(nèi)容1.平面;平面的基本性質(zhì);平面圖形直觀圖的畫法.2.兩條直線的位置關(guān)系;平行于同一條直線的兩條直線互相平行;對(duì)應(yīng)邊分別平行的角;異面直線所成的角;兩條異面直線互相垂直的概念;異面直線的公垂線及距離.3.直線和平面的位置關(guān)系;直線和平面平行的判定與性質(zhì);
2025-06-22 01:32
【摘要】一對(duì)一授課教案學(xué)員姓名:年級(jí):所授科目:上課時(shí)間:年月日時(shí)分至?xí)r分共小時(shí)老師簽名學(xué)生簽名教學(xué)主題空間向量與立體幾何上次作業(yè)檢查本次上課表現(xiàn)本
2025-06-23 04:23