freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理的說課稿-全文預(yù)覽

2025-11-13 05:13 上一頁面

下一頁面
  

【正文】 如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。 提問:那結(jié)論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)在三角形中,角與所對的邊滿足關(guān)系注意:,需要嚴(yán)格的理論證明。四、教學(xué)過程(一)創(chuàng)設(shè)情境(3分鐘)“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47176。 教學(xué)難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):認(rèn)知目標(biāo):通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,掌握正弦定理的內(nèi)容及其證明方法,使學(xué)生會運用正弦定理解決兩類基本的解三角形問題。謝謝!正弦定理說課稿5大家好,今天我向大家說課的題目是《正弦定理》。㈢設(shè)法走出“性質(zhì)概念一帶而過,演習(xí)作業(yè)鋪天蓋地”的誤區(qū),促使自己與學(xué)生一起走進(jìn)“重視探究、重視交流、重視過程” 的新天地。學(xué)法指導(dǎo):指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,讓學(xué)生在問題情景中學(xué)習(xí),再通過對實例進(jìn)行具體分析,進(jìn)而觀察歸納、演練鞏固,由具體到抽象,逐步實現(xiàn)對新知識的理解深化。通過教師對例題的講解培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣及科學(xué)的學(xué)習(xí)態(tài)度。(2)能力目標(biāo):①通過對直角三角形邊角數(shù)量關(guān)系的研究,發(fā)現(xiàn)正弦定理,體驗用特殊到一般的思想方法發(fā)現(xiàn)數(shù)學(xué)規(guī)律的過程。(三)課堂練習(xí)正弦定理說課稿4一、教材分析在初中,學(xué)生已經(jīng)學(xué)習(xí)了三角形的邊和角的基本關(guān)系;同時在必修4 ,學(xué)生也學(xué)習(xí)了三角函數(shù)、平面向量等內(nèi)容。如果已知三角形的任意兩邊與其中一邊的對角,應(yīng)用正弦定理,可以計算出另一邊的對角的正弦值,進(jìn)而確定這個角和三角形其他的邊和角。(二)講解新知接下來是新課講授環(huán)節(jié),我將分為四部分,分別為在直角三角形中推導(dǎo)正弦定理、在銳角三角形中推導(dǎo)正弦定理、在鈍角三角形中推導(dǎo)正弦定理以及正弦定理的應(yīng)用。(一)導(dǎo)入新課首先是導(dǎo)入環(huán)節(jié),我將采用溫故知新的導(dǎo)入方式。五、說教法和學(xué)法現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。四、說教學(xué)重難點我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點、突破難點。所以,教學(xué)中,利用學(xué)生的特點以及原有經(jīng)驗進(jìn)行教學(xué),增強學(xué)生的課堂參與度。本節(jié)課的學(xué)習(xí),也為以后學(xué)習(xí)和解決生活中的一些問題提供幫助。一、說教材教師對教材的掌握程度,是評判一位教師是否能上好一堂課的基本標(biāo)準(zhǔn)。證明:設(shè)三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC對不同水平的學(xué)生設(shè)計不同梯度的作業(yè),尊重學(xué)生的個性差異,有利于因材施教的教學(xué)原則的貫徹。例題2較難,目的是使學(xué)生明確,利用正弦定理有兩種可能,同時,引導(dǎo)學(xué)生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學(xué)有余力的同學(xué)鼓勵他們自學(xué)探究與發(fā)現(xiàn)教材8頁得內(nèi)容:《解三角形的進(jìn)一步討論》(五)小結(jié)歸納,深化拓展正弦定理正弦定理的證明方法正弦定理的應(yīng)用涉及的數(shù)學(xué)思想和方法。我們學(xué)習(xí)了正弦定理之后,你覺得它有什么應(yīng)用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:問題7:(教材例題1)⊿ABC中,已知A=30?,B=75?,a=40cm,解三角形。當(dāng)然,老師的希望能否變成現(xiàn)實,就要看大家的了。中亞細(xì)亞人阿爾比魯尼﹝9731048﹞給三角形的正弦定理作出了一個證明。(啟發(fā)引導(dǎo)學(xué)生用多種方法加以研究證明,尤其是向量法,在下節(jié)余弦定理的證明中還要用,因此務(wù)必啟發(fā)學(xué)生用向量法完成證明。(板書課題《解三角形》)引用教材本章引言,制造知識與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識的興趣。教學(xué)重點、難點教學(xué)重點:正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應(yīng)用。過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用“等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對現(xiàn)實世界的一些數(shù)學(xué)模型進(jìn)行思考。同時在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識。一、教材分析“解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強的應(yīng)用性,在這次課程改革中,被保留下來,并獨立成為一章。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。2.它表述了三角形的邊與對角的正弦值的關(guān)系。(1)a=20cm,b=11cm,B=30176。C=30176。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。2.例2。a=42。(五)講解例題,鞏固定理1.例1。4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明(四)歸納總結(jié),簡單應(yīng)用1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ?,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:在三角形中,角與所對的邊滿足關(guān)系這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性?!螧=53176。教法學(xué)法分析:教法:采用探究式課堂教學(xué)模式,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。五 板書設(shè)計第二篇:正弦定理說課稿正弦定理說課稿正弦定理說課稿1教材地位與作用:本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時??家恍┙獯痤}。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。(七)小結(jié)反思,提高認(rèn)識通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會? 1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。,B=45176。完了把時間交給學(xué)生。,a=,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。四 教學(xué)過程第一:創(chuàng)設(shè)情景,大概用2分鐘第二:實踐探究,形成概念,大約用25分鐘第三:應(yīng)用概念,拓展反思,大約用13分鐘(一)創(chuàng)設(shè)情境,布疑激趣 興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47176。突破重點的手段:抓住學(xué)生情感的興奮點,激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進(jìn)。情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的主動性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習(xí)的興趣。一 教材分析本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時常考一些解答題。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計。能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。二 教法根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。(二)探尋特例,提出猜想1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。,B=176。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。,c=10cm(2)A=60176。學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。情感目標(biāo):通過推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對稱美和數(shù)學(xué)的實際應(yīng)用價值。教學(xué)過程(一)創(chuàng)設(shè)情境,布疑激趣“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47176。2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。8176。例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。(1)A=45176。c=20cm在△ABC中,已知下列條件,解三角形。(七)小結(jié)反思,提高認(rèn)識通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。(九)作業(yè)布置正弦定理說課稿2尊敬的各位專家、評委:大
點擊復(fù)制文檔內(nèi)容
化學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1