【摘要】§向量的概念(課前預習案)班級:___姓名:________編寫:一、新知導學1、我們把具有____和_____的量稱為向量。2、具有線段叫做,以A為始點,B為終點的有向線段記作_____,其長度(或模)記為__,長度為零的向量叫做_____,記作__,長度為1的向量叫做______3、向量可
2024-11-27 23:46
【摘要】平面向量數(shù)量積的物理背景及其含義一、向量的向量積在物理學中,由于討論像力矩以及物體繞軸旋轉時的角速度與線速度之間的關系等這類問題的需要,就必須引進兩向量乘法的另一運算——向量的向量積.定義如下:兩個向量a與b的向量積是一個新的向量c:(1)c的模等于以a及b兩個向量為邊所作成的平行四邊形的面積;(2)c垂直于
2024-12-05 06:47
【摘要】《向量數(shù)量積的運算律》教學設計一、情景引入知識回顧:平面向量數(shù)量積的定義及幾何意義(學生回答)問題導思:向量的數(shù)量積是否具有類似于數(shù)量乘法那樣的運算律?⑴交換律:ba?=;⑵結合律:??ba??==;⑶分配律:??cba??=。
2024-11-18 16:44
【摘要】同角三角函數(shù)的關系(1)【學習目標】1、掌握同角三角函數(shù)的兩個基本關系式2、能準確應用同角三角函數(shù)關系進行化簡、求值3、對于同角三角函數(shù)來說,認清什么叫“同角”,學會運用整體觀點看待角4、結合三角函數(shù)值的符號問題,求三角函數(shù)值【重點難點】同角三角函數(shù)的兩個基本關系式和應用【自主學習】一、數(shù)學建構:
2024-11-19 12:32
【摘要】§3.空間向量的數(shù)量積運算知識點一求兩向量的數(shù)量積如圖所示,已知正四面體O-ABC的棱長為a,求AB·OC..解由題意知|AB|=|AC|=|AO|=a,且〈AB,AO〉=120AB,CA〉=12
2024-11-20 03:14
【摘要】平面向量的數(shù)量積的物理背景及其含義命題方向1計算向量的數(shù)量積例1已知|a|=4,|b|=5,當(1)a∥b;(2)a⊥b;(3)a與b的夾角為60°時,分別求a與b的數(shù)量積.[分析]a∥b時其夾角為0°或180°,a⊥b時其夾角為90°,將兩向量的模及夾角代入
【摘要】第三章三角恒等變換兩角和與差的余弦公式【學習目標】1、理解向量法推導兩角和與差的余弦公式,并能初步運用解決具體問題;2、應用公C)(???式,求三角函數(shù)值.3、培養(yǎng)探索和創(chuàng)新的能力和意見.【學習重點難點】向量法推導兩角和與差的余弦公式【學習過程】(一)預習指導探究cos(α+β
2024-11-28 16:29
【摘要】.空間向量的數(shù)量積(1)【學習目標】1.掌握空間向量夾角和模的概念及表示方法;2.掌握兩個向量的數(shù)量積的計算方法,并能利用兩個向量的數(shù)量積解決立體幾何中的一些簡單問題.【重點難點】空間向量夾角和模的概念及表示方法利用兩個向量的數(shù)量積解決立體幾何中的一些簡單問題.【學習過程】一、自主預習(預習教材P9
2024-11-19 20:38
【摘要】平面向量數(shù)量積的物理背景及其含義考查知識點及角度難易度及題號基礎中檔稍難向量的數(shù)量積的基本運算3、5向量的夾角與垂直問題1、2、68、1112向量的模47、9、101.若a·b<0,則a與b的夾角θ的取值范圍是()A.??????0,π2
【摘要】課題平面向量的數(shù)量積的物理背景教學目標知識與技能了解平面向量數(shù)量積的物理背景,即物體在力F的作用下產生位移s所做的功.過程與方法掌握平面向量數(shù)量積的定義和運算律,理解其幾何意義.情感態(tài)度價值觀會用兩個向量的數(shù)量積求兩個向量的夾角以及判斷兩個向量是否垂直.重點向量的數(shù)量積是一種新的
【摘要】三角函數(shù)的圖象與性質(3)【學習目標】1、能正確作出正切函數(shù)圖像;2、借助圖像理解正切函數(shù)的性質;【重點難點】正切函數(shù)的圖像與性質一、預習指導1、利用正切線來畫出tan((,))22yxx?????的圖像.2、正切函數(shù)的圖像:
2024-11-28 16:30
【摘要】二倍角的三角函數(shù)(1)【學習目標】、余弦、正切公式;、化簡、恒等證明?!緦W習重點難點】重點:;。難點:理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù)?!緦W習過程】(一)預習指導:、余弦、正切方式:sin(α+β)=(S???)cos(α+
2024-11-19 12:31
【摘要】三角函數(shù)的圖象與性質(1)【學習目標】1、能借助正弦線畫出正弦函數(shù)的圖象,并在此基礎上由平移正弦曲線的方法畫出余弦函數(shù)的圖象;2、會用五點法畫出正弦曲線和余弦曲線在一個周期上的草圖;3、借助圖象理解并運用正、余弦函數(shù)的定義域和值域?!局攸c難點】五點法作正、余弦函數(shù)的圖象;正、余弦函數(shù)的定義域和值域。一、預習指導
【摘要】撰稿教師:李麗麗自學目標,并理解其幾何意義。2.理解和應用向量數(shù)乘的運算律。學習過程一、※課前準備(預習教材86頁~87頁,找出疑惑之處)二、※新課導學1.數(shù)乘定義:______________________是一個向量,記作a?,它的長度與方向規(guī)定如下:(1)||a?=____
【摘要】§數(shù)乘向量(課前預習案)班級:___姓名:________編寫:一、新知導學1、實數(shù)λ與向量a的乘積是一個向量,記作;|a?|=。2、a?的方向當λ0時,與a;當λ<