【摘要】問題探究RCsincBsinbAsinaABCRCBAcbaCABCRt2901???????? 圓的半徑,求證:的外接是所的邊長,,,為角,,,中,:在 探究結論是否還成立?中,上述:在任意一個三角形 探究ABC2CsinBsinAsincbaCsin
2025-03-12 14:29
【摘要】4.直線與圓的位置關系第一課時直線與圓的位置關系(新授課)[提出問題]“大漠孤煙直,長河落日圓”是唐朝詩人王維的詩句,它描述了黃昏日落時分塞外特有的景象.如果我們把太陽看成一個圓,地平線看成一條直線,觀察下面三幅太陽落山的圖片.問題1:圖片中,地平線與太陽的位置關系怎樣?提示:(1)相離(2)相切(3)相交
2025-11-08 23:16
【摘要】知識回顧1.解析幾何研究的一般方法;2.已知的傾斜角α的定義;3.直線的斜率公式k及其局限;4.平面幾何中,平面內的兩條直線有幾種位置關系?問題探究已知直線l1:y=k1x+b1,l2:=k2x+b2(1)若l1//l2,你能得出什么結論?(2)若l1⊥l2,你能得出什么結論
2025-03-12 14:54
【摘要】知識回顧1.直線、平面垂直的判定及其性質;2.空間角的一般求法。典例精析例1:如圖,在正方體ABCD-A′B′C′D′中,求證:平面ACC′A′⊥平面A′BD。DABCA′D′B′C′例2:如圖,棱錐V-ABC中,VO⊥平面ABC,O∈CD,VA=VB,AD=B
2025-03-12 14:53
【摘要】問題探究;,,,,,) ?。?;,,,,,) (距離:兩點,再求它們之間的,標出:在空間直角坐標系中 探究)753()106(2)413()532(11BABABA。與原點間的距離是,,一點中,任意:在空間直角坐標系 探究________zyxpOxyz)(2表示什么圖形?,那么是定長:如果 探
2025-03-12 14:58
【摘要】復習回顧:圓與圓的位置關系:直線與圓的位置關系:相離、相交、相切判斷直線與圓的位置關系有哪些方法?(1)根據(jù)圓心到直線的距離;(2)根據(jù)直線的方程和圓的方程組成方程組的實數(shù)解的個數(shù);相離、外切、相交、內切、內含設想:如果把兩個圓的圓心放在數(shù)軸上,那么兩個圓在不同的位置關系下,我們能得到哪些結論呢?(1)利用連心線長與|r1+r2|和|
2025-06-06 00:09
【摘要】「自我檢測」檢測1.說出下列函數(shù)的奇偶性:y=x30y(1)x1-11-10y(2)x-111y=丨x丨y0(3)x21-1-1xy1?0y(4)xy=0檢測2.函數(shù)y=f(x
2025-03-12 14:39
【摘要】康托(1845—1918)德國數(shù)學家集合集合1.正整數(shù)1,2,3,??;2.中國古典四大名著;3.1510班的學生;4.中國男子籃球隊的隊員。集合1.正整數(shù)1,2,3,??;2.中國古典四大名著;3.1510班的學生;4.中國男
【摘要】問題探究CcoscbbacBcosaccabAcosbccbacbaCBAABC2221222222222?????????? ,請證明下列結論:,,分別是的對邊,,中,:在 探究以解決哪些問題?請問余弦定理可對角有關的三角問題,對邊,:正弦定理可以解決與 探究2嗎
【摘要】直線與圓的位置關系備用習題m>0,則直線2(x+y)+1+m=0與圓x2+y2=m的位置關系為()分析:圓心到直線的距離為d=21m?,圓半徑為m.∵d-r=21m?-m=21(m-2m+1)=
2025-11-29 20:20
【摘要】1.研讀教材P23思考部分(1)正方體、長方體的表面積如何求解?(2)通過求表面積公式的推導,體現(xiàn)了“體”與“面”維度間怎樣的關系?2.研讀教材P24探究部分:(1)如何推導棱柱、棱錐、棱臺的表面積?(2)完成P24例1,體會求表面積的推理思路?“已知棱長為a,各面均為等邊三角形的四邊體S
【摘要】知識回顧1.比較兩數(shù)大小的方法;2.不等式的基本性質。回顧練習。,求證:最大,均為正數(shù),且,,,:設 練習cbdadcbaadcba????1練習2:某市環(huán)保局為增加城市的綠地面積,提出兩個投資方案:方案A為一次性投資500萬元;方案B為第一年投資5萬元,以后每年都比前一年增加
【摘要】:①設圓C1∶x2+y2+D1x+E1y+F1=0和圓C2∶x2+y2+D2x+E2y+F2=0.若兩圓相交,則過交點的圓系方程為x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ為參數(shù),圓系中不包括圓C2,λ=-1為兩圓的公共弦所在直線方程).若兩圓相切呢?:②
2025-06-05 23:39
【摘要】直線與圓的位置關系一、教材分析學生在初中的學習中已了解直線與圓的位置關系,并知道可以利用直線與圓的交點的個數(shù)以及圓心與直線的距離d與半徑r的關系判斷直線與圓的位置關系,但是,在初中學習時,利用圓心與直線的距離d與半徑r的關系判斷直線與圓的位置關系的方法卻以結論性的形式呈現(xiàn).在高一學習了解析幾何以后,要考慮的問題是如何掌握由直線
2025-11-29 02:40
【摘要】直線與圓的位置關系【學習目標】1.能根據(jù)給定的直線、圓的方程,判斷直線與圓的位置關系.2.通過直線與圓的位置關系的學習,體會用代數(shù)方法解決幾何問題的思想.3.通過本節(jié)內容的學習,進一步體會到用坐標法解決幾何問題的優(yōu)越性,逐步養(yǎng)成自覺應用坐標法解決幾何問題的習慣.【學習重點】直線與圓的位置關系的幾何圖形及其判斷方法.用坐標法判直線與圓的位置