【摘要】講練學(xué)案部分§空間向量及其加減運(yùn)算.知識(shí)點(diǎn)一空間向量的概念判斷下列命題是否正確,若不正確,請(qǐng)簡(jiǎn)述理由.①向量AB與AC是共線向量,則A、B、C、D四點(diǎn)必在一條直線上;②②單位向量都相等;③任一向量與它的相反向量不相等;④四邊形ABCD是平行四邊形
2024-12-08 01:49
【摘要】§3.空間向量的數(shù)乘運(yùn)算知識(shí)點(diǎn)一空間向量的運(yùn)算已知ABCD—A′B′C′D′是平行六面體.(1)化簡(jiǎn)12'23AABCAB??(2)設(shè)M是底面ABCD的中心,N是側(cè)面BCC′B′對(duì)角線BC′上的34分點(diǎn),設(shè)'MNABADAA???
【摘要】空間向量的坐標(biāo)一向量在軸上的投影與投影定理二向量在坐標(biāo)軸上的分量與向量的坐標(biāo)三向量的模與方向余弦的坐標(biāo)表示式一、向量在軸上的投影與投影定理.上的有向線段是軸,設(shè)有一軸uABuuAB.ABABABuuABuABAB==llllll,即的值,
2025-11-08 23:31
【摘要】平面向量的坐標(biāo)運(yùn)算學(xué)習(xí)了向量的坐標(biāo)表示后,我們可以把向量運(yùn)算代數(shù)化.將數(shù)與形緊密結(jié)合起來(lái),從而使許多問(wèn)題轉(zhuǎn)化為我們熟知的數(shù)量運(yùn)算,使問(wèn)題得以簡(jiǎn)化.下面舉例說(shuō)明平面向量的坐標(biāo)運(yùn)算在解幾類(lèi)題中的應(yīng)用.一、兩向量相等問(wèn)題例1已知向量?u(),xy和向量v(2)??,yyx的對(duì)應(yīng)關(guān)系可用v?f()u表示,求證:對(duì)任意向量,ab
2025-11-26 06:36
【摘要】1法門(mén)高中姚連省2一、復(fù)習(xí)引入用空間向量解決立體幾何問(wèn)題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問(wèn)題中涉及的點(diǎn)、直線、平面,把立體幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;(化為向量問(wèn)題)(2)通過(guò)向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問(wèn)題;
2025-11-09 13:29
【摘要】數(shù)乘運(yùn)算(二)一、共線向量:零向量與任意向量共線.:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作//ab:對(duì)空間任意兩個(gè)向量
2025-11-09 12:14
【摘要】第三章間向量與立體幾何§空間向量及其運(yùn)算知識(shí)點(diǎn)一空間向量概念的應(yīng)用給出下列命題:①將空間中所有的單位向量移到同一個(gè)點(diǎn)為起點(diǎn),則它們的終點(diǎn)構(gòu)成一個(gè)圓;②若空間向量a、b滿足|a|=|b|,則a=b;③
2024-12-08 22:40
【摘要】第一課時(shí)空間向量及其加減與數(shù)乘運(yùn)算教學(xué)要求:理解空間向量的概念,掌握其表示方法;會(huì)用圖形說(shuō)明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問(wèn)題.教學(xué)重點(diǎn):空間向量的加減與數(shù)乘運(yùn)算及運(yùn)算律.教學(xué)難點(diǎn):由平面向量類(lèi)比學(xué)習(xí)空間向量.教學(xué)過(guò)程:一、復(fù)習(xí)引入1、有關(guān)平面向量的一
2025-11-10 22:43
【摘要】第一課時(shí)?學(xué)習(xí)目標(biāo)?情境設(shè)置?探索研究?反思應(yīng)用?歸納總結(jié)?作業(yè)學(xué)習(xí)目標(biāo)?、標(biāo)準(zhǔn)方程及其求法;?、焦距、焦點(diǎn)位置與方程關(guān)系;?.情境設(shè)置?橢圓的定義?把平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離和等于常數(shù)(大于|F1F2|)的點(diǎn)軌跡叫做橢圓。這兩
2025-11-10 16:17
【摘要】第二章一、選擇題1.下列說(shuō)法中正確的是()A.任意兩個(gè)空間向量都可以比較大小B.方向不同的空間向量不能比較大小,但同向的空間向量可以比較大小C.空間向量的大小與方向有關(guān)D.空間向量的??梢员容^大小[答案]D[解析]任意兩個(gè)空間向量,不論同向還是不同向均不存在大小關(guān)系,故A、B不正確;
2025-11-21 11:35
【摘要】§3.空間向量的數(shù)量積運(yùn)算知識(shí)點(diǎn)一求兩向量的數(shù)量積如圖所示,已知正四面體O-ABC的棱長(zhǎng)為a,求AB·OC..解由題意知|AB|=|AC|=|AO|=a,且〈AB,AO〉=120AB,CA〉=12
2025-11-11 03:14
【摘要】平面向量數(shù)量積的坐標(biāo)表示一、教材分析1.本課的地位及作用:平面向量數(shù)量積的坐標(biāo)表示,就是運(yùn)用坐標(biāo)這一量化工具表達(dá)向量的數(shù)量積運(yùn)算,為研究平面中的距離、垂直、角度等問(wèn)題提供了全新的手段。它把向量的數(shù)量積與坐標(biāo)運(yùn)算兩個(gè)知識(shí)點(diǎn)緊密聯(lián)系起來(lái),是全章重點(diǎn)之一。:在此之前學(xué)生已學(xué)習(xí)了平面向量的坐標(biāo)表示和平面向量數(shù)量積概念及運(yùn)算,但數(shù)量積是用長(zhǎng)度和夾角這兩個(gè)概念
2025-11-26 06:37
【摘要】空間“角度”問(wèn)題法門(mén)高中姚連省一、復(fù)習(xí)引入用空間向量解決立體幾何問(wèn)題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問(wèn)題中涉及的點(diǎn)、直線、平面,把立體幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題;(2)通過(guò)向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問(wèn)題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何
【摘要】,第三章空間向量與立體幾何,3.1空間向量及其運(yùn)算空間向量運(yùn)算的坐標(biāo)表示,第一頁(yè),編輯于星期六:點(diǎn)三十八分。,第二頁(yè),編輯于星期六:點(diǎn)三十八分。,自,主,預(yù),習(xí),探,新,知,第三頁(yè),編輯于星期六:點(diǎn)三...
2025-10-13 19:06
【摘要】第二章§5第二課時(shí)把握熱點(diǎn)考向應(yīng)用創(chuàng)新演練考點(diǎn)一考點(diǎn)二理解教材新知第二課時(shí)直線與平面的夾角在上節(jié)研究的山體滑坡問(wèn)題中,A、B兩點(diǎn)到直線l(水平地面與山坡的交線)的距離分別為AC和BD,直線BD與地面ACD的夾角為φ.
2025-11-08 19:02