【摘要】第二章二次函數(shù)二次函數(shù)與一元二次方程(2)?二次函數(shù)y=ax2+bx+c的圖象和x軸交點的坐標與一元二次方程ax2+bx+c=0的根有什么關(guān)系?二次函數(shù)y=ax2+bx+c的圖象和x軸交點一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判別式Δ=b2-4ac有兩個交點有兩個相異的實
2025-11-08 08:35
【摘要】二次函數(shù)的應用(一)一、選擇題:1.二次函數(shù)y=ax2+bx+c的圖象如圖2-90所示,則下列判斷錯誤的是()A.a(chǎn)>0B.c<0D.y隨x的增大而減小2.關(guān)于二次函數(shù)y=x2+4x-7的最大(小)值敘述正確的是()A.當x
2025-11-19 19:22
【摘要】第二章時間:120分鐘滿分:120分一、精心選一選(每小題3分,共30分)1.已知拋物線y=ax2+bx+c的開口向上,頂點坐標為(3,-2),那么該拋物線有(A)A.最小值-2B.最大值-2C.最小值3D.最大值32.如果將拋物線y=x2+2向下平移1個單位,那么
2025-11-19 01:28
【摘要】3確定二次函數(shù)的表達式..二次函數(shù)解析式有哪幾種表達方式?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k如何求二次函數(shù)的解析式?已知二次函數(shù)圖象上三個點的坐標,可用待定系數(shù)法求其解析式.交點式:y=a(x-x1)(x-x2)解析:設所求的二次函數(shù)為y=ax2+bx+c,由條件得:
2025-06-15 03:00
【摘要】第二章二次函數(shù)一、選擇題1.拋物線y=-3x2+2x-l的圖象與坐標軸的交點個數(shù)是()A.無交點B.1個C.2個D.3個2、拋物線y=-2x2-4x-5經(jīng)過平移后得到拋物線y=-2x2,平移方法是()A.向左平移1個單位,再向下平移3
2025-11-19 19:21
【摘要】3確定二次函數(shù)的表達式【基礎梳理】確定二次函數(shù)表達式的一般方法已知條件選用表達式的形式頂點和另一點的坐標_______二次函數(shù)各項系數(shù)中的一個和兩點的坐標_______三個點的坐標_______頂點式一般式一般式【自我診斷】1.(1)確定二次函數(shù)的表達式一般需要三個條件.(
2025-06-14 06:48
2025-06-15 02:54
2025-06-12 13:43
【摘要】第二章二次函數(shù)知識點1用一般式(三點式)確定二次函數(shù)表達式(1,0),(2,0)和(0,2)三點的二次函數(shù)的表達式是(D)=2x2+x+2=x2+3x+2=x2-2x+3=x2-3x+2y軸交點的縱坐標為1,且經(jīng)過點(2,5)和(-2,13),求這個二次函數(shù)的表達式.
2025-06-18 00:27
【摘要】謝謝觀看Thankyouforwatching!
2025-06-20 06:44
2025-06-12 19:13
【摘要】“時間是個常數(shù),但對勤奮者來說,是個‘變數(shù)’。用‘分’來計算時間的人比用‘小時’來計算時間的人時間多59倍?!?---雷巴柯夫y是x的一次函數(shù),請你添加條件___________________,則此函數(shù)的表達式為_________.已知一次函數(shù)y=kx+b圖象上兩點的坐標,
【摘要】確定二次函數(shù)的表達式第二章二次函數(shù)導入新課講授新課當堂練習課堂小結(jié)學習目標.(難點).(重點)導入新課復習引入y=kx+b(k≠0)有幾個待定系數(shù)?通常需要已知幾個點的坐標求出它的表達式??它的一般步驟是什么?2個2個待定系數(shù)法(1)設:(表達式)
2025-06-18 00:42
2025-06-19 07:25
【摘要】二次函數(shù)的應用第一課時檢測(時間45分鐘滿分100分)一.選擇題(每小題5分,共50分)1.(2017?臨沂)足球運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關(guān)系如下表:
2025-11-07 15:23