【摘要】第一篇:初一幾何證明題 三角形 1、已知ΔABC,AD是BC邊上的中線。E在AB邊上,ED平分∠ADB。F在AC邊上,F(xiàn)D平分∠ADC。求證:BE+CF>EF。 1、已知ΔABC,BD是AC邊上...
2025-10-15 20:15
【摘要】第一篇:幾何證明題專題講解 幾何證明題專題講解 【知識(shí)精讀】 ,它對(duì)培養(yǎng)學(xué)生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數(shù)量關(guān)系;二是有關(guān)平面圖形的位置關(guān)系。這兩類問(wèn)題常???..
2025-10-18 19:29
【摘要】1、垂直于同一條直線的兩條直線一定A、平行B、相交C、異面D、以上都有可能2、a,b,c表示直線,M表示平面,給出下列四個(gè)命題:①若a∥M,b∥M,則a∥b;②若bM,a∥b,則a∥M;③若a⊥c,b⊥c,則a∥b;④若a⊥M,b⊥M,則a∥ A、0個(gè) B、1個(gè)
2025-03-25 02:03
【摘要】第一篇:初一幾何證明題 初一幾何證明題 一、1)D是三角形ABC的BC邊上的點(diǎn)且CD=AB,角ADB=角BAD,AE是三角形ABD的中線,求證AC=2AE。 (2)在直角三角形ABC中,角C=9...
2025-10-20 02:17
【摘要】第一篇:如何進(jìn)行初中幾何證明題的教學(xué) 如何進(jìn)行初中幾何證明題的教學(xué) 俗話說(shuō):“幾何學(xué)、叉叉角角,老師難教、學(xué)生難學(xué)”我從多年的教學(xué)中得到:初中幾何證明題即是學(xué)習(xí)的重點(diǎn),又是難點(diǎn)。很多同學(xué)對(duì)幾何證明...
2025-10-20 02:54
【摘要】空間幾何證明A1ED1C1B1DCBA1、如圖,在正方體中,是的中點(diǎn),求證:平面。2、已知中,面,,求證:面.3、正方體中,求證:(1);4、正方體ABCD—A1B1C1D1中.(1)求證
2025-03-25 06:42
【摘要】第一篇:幾何證明題的技巧 幾何證明題的技巧 1)證明線段相等,角相等的題,通常找到線段所在圖形,證明全等 2)隱藏條件:比如特殊圖形的性質(zhì)自己要清楚,有些時(shí)候幾何題做不出來(lái)就是因?yàn)闆](méi)有利用好隱藏...
2025-10-12 22:38
【摘要】xOyxyO二次函數(shù)知識(shí)導(dǎo)航:?1、二次函數(shù)的定義?2、二次函數(shù)的圖像及性質(zhì)?3、求解析式的三種方法?4、二次函數(shù)的圖象與系數(shù)之間的關(guān)系?5、拋物線的平移?6、二次函數(shù)與一元二次方程的關(guān)系?7、二次函數(shù)的綜合應(yīng)用y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c
2025-04-29 04:16
【摘要】第一篇:初二(下)幾何證明題練習(xí)(一) 初二(下)幾何證明題練習(xí) (一),∠EAF=45°(1)探究BP、PQ、DQ關(guān)系;(2)探究DE、BP、AB關(guān)系; (3)連接AC,探究AC、CM、CN的...
2025-10-20 00:57
【摘要】教育學(xué)科教師講義講義編號(hào):副校長(zhǎng)/組長(zhǎng)簽字:
2025-05-16 02:10
【摘要】8.如圖,已知E是菱形ABCD的邊BC上一點(diǎn),且∠DAE=∠B=80°,那么∠CDE的度數(shù)為( ) A.20° B.25° C.30° D.35°考點(diǎn): 菱形的性質(zhì).分析: 依題意得出AE=AB=AD,∠ADE=50°,又因?yàn)椤螧=80°故可推出∠ADC=80°,∠CDE=∠ADC﹣∠
2025-03-24 12:34
【摘要】,已知矩形紙片ABCD,AD=2,AB=4.將紙片折疊,使頂點(diǎn)A與邊CD上的點(diǎn)E重合,折痕FG分別與AB,CD交于點(diǎn)G,F(xiàn),AE與FG交于點(diǎn)O.(1)如圖1,求證:A,G,E,F(xiàn)四點(diǎn)圍成的四邊形是菱形;(2)如圖2,當(dāng)△AED的外接圓與BC相切于點(diǎn)N時(shí),求證:點(diǎn)N是線段BC的中點(diǎn);(3)如圖2,在(2)的條件下,求折痕FG的長(zhǎng).【答案】解:(1)由折疊的性質(zhì)可得,GA=G
【摘要】幾何證明練習(xí)題及答案【知識(shí)要點(diǎn)】,并能夠熟練應(yīng)用;;,能夠應(yīng)用綜合法熟練地證明幾何命題?!靖拍罨仡櫋浚簩?duì)應(yīng)邊(),對(duì)應(yīng)角()對(duì)應(yīng)高線(),對(duì)應(yīng)中線(),對(duì)應(yīng)角的角平分線()?!鰽BC中,∠C=90°,∠A=30°,則BC:AC:AB=()?!纠}解析】【題1】已知
2025-06-23 18:44
【摘要】第一篇:輔助線幾何證明題 輔助線的幾何證明題 三角形輔助線做法 圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。 角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看...
2025-10-13 20:13
【摘要】第一篇:怎樣做好幾何證明題 怎樣做好幾何證明題 推理能力是一個(gè)人應(yīng)具備的重要能力之一,數(shù)學(xué)教學(xué)要求學(xué)生學(xué)會(huì)推理論證,也學(xué)會(huì)合情推理。合情推理能力的培養(yǎng)是一個(gè)長(zhǎng)期過(guò)程,由于初中學(xué)生年齡小,空間想象能...
2025-10-13 05:54