【摘要】曲線的參數(shù)方程教學(xué)目標(biāo):1.通過分析拋物運(yùn)動(dòng)中時(shí)間與運(yùn)動(dòng)物體位置的關(guān)系,寫出拋物運(yùn)動(dòng)軌跡的參數(shù)方程,體會(huì)參數(shù)的意義。2.分析圓的幾何性質(zhì),選擇適當(dāng)?shù)膮?shù)寫出它的參數(shù)方程。3.會(huì)進(jìn)行參數(shù)方程和普通方程的互化。教學(xué)重點(diǎn):根據(jù)問題的條件引進(jìn)適當(dāng)?shù)膮?shù),寫出參數(shù)方程,體會(huì)參數(shù)的意義。參數(shù)方程和普通方程的互化。教學(xué)難點(diǎn):根據(jù)幾何性質(zhì)選取恰當(dāng)?shù)膮?shù),建立曲線的參數(shù)方程。參數(shù)方程和
2025-06-25 15:21
【摘要】二端口網(wǎng)絡(luò)江蘇大學(xué)電路教學(xué)組第13章二端口網(wǎng)絡(luò)13-1二端口網(wǎng)絡(luò)及其參數(shù)方程13-2二端口網(wǎng)絡(luò)的等效電路13-4二端口網(wǎng)絡(luò)的連接13-5二端口網(wǎng)絡(luò)的實(shí)例13-3二端口網(wǎng)絡(luò)的網(wǎng)絡(luò)函數(shù)二端口網(wǎng)絡(luò)江蘇大學(xué)電路教學(xué)組二端
2025-01-06 07:02
【摘要】《》問題:(1)求到點(diǎn)C(1,2)距離為2的點(diǎn)的軌跡方程.(x?1)2+(y?2)2=4(2)方程(x?1)2+(y?2)2=4表示的曲線是什么?以點(diǎn)C(1,2)為圓心,2為半徑的圓.:平面內(nèi)與定點(diǎn)的距離等于定長的點(diǎn)的集合
2025-11-12 01:19
【摘要】圓的方程平面內(nèi)與定點(diǎn)距離等于定長的點(diǎn)的集合(軌跡)P={M||MC|=r}一、知識(shí)回顧MrCC圓的方程:rbyax????22)()(xyOC圓心(a,b),半徑r圓的定義:集合表示:圓的標(biāo)準(zhǔn)方程二、知識(shí)學(xué)習(xí)(1)方程中參數(shù)a、b、r的意義
2025-08-16 02:22
【摘要】一、隱函數(shù)求導(dǎo)法二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)§上頁下頁鈴結(jié)束返回首頁上頁下頁鈴結(jié)束返回首頁一、隱函數(shù)的導(dǎo)數(shù)?顯函數(shù)與隱函數(shù)下頁(1)顯函數(shù):我們把函數(shù)y可由自變量x的解析式稱為顯函數(shù).)(xfy?也可以確定一個(gè)函數(shù),143??yx對
2025-07-23 19:15
【摘要】圓的一般方程OCM(x,y)rbyax2)(2)(2??????ba,圓的標(biāo)準(zhǔn)方程的形式是怎樣的?其中圓心的坐標(biāo)和半徑各是什么?r復(fù)習(xí)回顧:OCM(x,y)思考:下列方程表示什么圖形?(1)x2+y2-2x+4y-4=0(2)x2+y2-2x+4y+5=0(3)x2+y2-2x
2025-08-04 15:02
【摘要】四漸開線與擺線1、漸開線2、擺線1、擺線思考:P41如果在自行車的輪子上噴一個(gè)白色印記,那么自行車在筆直的道路上行使時(shí),白色印記會(huì)畫出什么樣的曲線?3、擺線的定義同樣地,我們先分析圓在滾動(dòng)過程中,圓周上的這個(gè)動(dòng)點(diǎn)滿足的幾何條件。我們把點(diǎn)M的軌跡叫做平擺線,簡稱擺線,又叫旋輪線。
2025-07-26 03:51
【摘要】2020/12/241§圓的方程(2)圓是__的點(diǎn)的集合;(3)推導(dǎo)中利用了___公式(
2025-11-08 19:45
【摘要】直線與圓的方程的應(yīng)用直線與圓的方程在生產(chǎn)、生活實(shí)踐以及數(shù)學(xué)中有著廣泛的應(yīng)用,本節(jié)課我們將通過幾個(gè)例子說明直線與圓的方程在實(shí)際生活以及平面幾何中的應(yīng)用例1:如圖是圓拱形橋一孔圓拱的示意圖.這個(gè)圓的圓拱跨度AB=20m,拱高OP=4m,建造時(shí)每間隔4m需要用一根支柱支撐.求支柱的高度(精確到;
2025-09-21 10:18
【摘要】圓的方程一、知識(shí)清單1.⑴曲線與方程:在直角坐標(biāo)系中,如果某曲線上的與一個(gè)二元方程的實(shí)數(shù)建立了如下關(guān)系:①曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解.②以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).那么這個(gè)方程叫做曲線方程;這條曲線叫做方程的曲線(圖形).⑵曲線和方程的關(guān)系,實(shí)質(zhì)上是曲線上任一點(diǎn)其坐標(biāo)與方程的一種關(guān)系,曲線上任一點(diǎn)是方程的解;反過來,滿足方程的解所對應(yīng)的點(diǎn)是曲線上
2025-07-24 17:16
【摘要】分階練習(xí)(16)第十六練圓的方程(1)A階訓(xùn)練——基礎(chǔ)扎根·(x2+y2-1)=0和x2+(x2+y2-1)2=0,它們表示的圖形是(),后者是一條直線一個(gè)圓,后者是兩個(gè)點(diǎn)(x-1)2+(y-3)2=1關(guān)于直線2x+y+5=0對稱的圓的方程是()A.(x+7)2+(y+1)2=1B.(x+7
2025-08-04 09:09
【摘要】圓的方程一、選擇題(共30小題)1、(2011?重慶)在圓x2+y2﹣2x﹣6y=0內(nèi),過點(diǎn)E(0,1)的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為( ?。?A、 B、 C、 D、2、(2009?重慶)圓心在y軸上,半徑為1,且過點(diǎn)(1,2)的圓的方程為( ?。?A、x2+(y﹣2)2=1 B、x2+(y+2)2=1 C、(x﹣1)2+(y﹣
2025-07-24 18:34
【摘要】直線的參數(shù)方程教學(xué)目標(biāo):1.聯(lián)系數(shù)軸、向量等知識(shí),推導(dǎo)出直線的參數(shù)方程,并進(jìn)行簡單應(yīng)用,體會(huì)直線參數(shù)方程在解決問題中的作用.,培養(yǎng)綜合運(yùn)用所學(xué)知識(shí)分析問題和解決問題的能力,進(jìn)一步體會(huì)運(yùn)動(dòng)與變化、數(shù)形結(jié)合、轉(zhuǎn)化、類比等數(shù)學(xué)思想.3.通過建立直線參數(shù)方程的過程,激發(fā)求知欲,培養(yǎng)積極探索、勇于鉆研的科學(xué)精神、嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.教學(xué)重點(diǎn):聯(lián)系數(shù)軸、向量等知識(shí),寫出直線的
2025-04-17 07:52
【摘要】圓的方程小結(jié)復(fù)習(xí)1、圓的方程.(1)曲線與方程在直角坐標(biāo)系中,如果某曲線上的與一個(gè)二元方程的實(shí)數(shù)建立了如下關(guān)系:①曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解.②以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).那么這個(gè)方程叫做曲線方程;這條曲線叫做方程的曲線(圖形).⑵曲線和方程的關(guān)系,實(shí)質(zhì)上是曲線上任一點(diǎn)其坐標(biāo)與方程的一種關(guān)系,曲線上任一點(diǎn)是方程的解;反過來,滿足方程的解所對應(yīng)的點(diǎn)是
2025-07-23 20:56
【摘要】橢圓的幾何性質(zhì)(5)——橢圓的參數(shù)方程(教案)齊魯石化五中翟慎佳一.目的要求:1.了解橢圓參數(shù)方程,了解系數(shù)a、b、含義。2.進(jìn)一點(diǎn)完善對橢圓的認(rèn)識(shí),并使學(xué)生熟悉的掌握坐標(biāo)法。3.培養(yǎng)理解能力、知識(shí)應(yīng)用能力。二.教學(xué)目標(biāo):1.知識(shí)目標(biāo):學(xué)習(xí)橢圓的參數(shù)方程。了解它的建立過程,理解它與普通方程的相互聯(lián)系;對橢圓有一個(gè)較全面的了解。2.能力
2025-04-17 04:22