【摘要】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,
2024-11-11 21:10
【摘要】Oxya引入:,點(diǎn)A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-09 04:47
2024-11-10 01:04
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=a
2024-11-11 09:01
【摘要】平面向量的數(shù)量積學(xué)習(xí)目標(biāo):、夾角平面向量的數(shù)量積的定義已知兩個(gè)非零向量a和b,它們的夾角為?,我們把數(shù)量叫做a與b的數(shù)量積(或內(nèi)積),記作a·b,即?cos||||ba?c
2024-11-18 08:49
【摘要】永春三中王門鋅平面向量數(shù)量積的坐標(biāo)表示1、向量加法三角形法則a+b=(x1+x2,y1+y2)2、向量減法三角形法則a–b=(x1–x2,y1–y2)3、實(shí)數(shù)與向量的積
2024-11-10 03:15
【摘要】§夾角和距離公式空間直角坐標(biāo)系若a=a1i+a2j+a3kzxyojkiAOA=(x,y,z);則a=(a1,a2,a3)A(x,y,z)設(shè)A(x1,y1,z1),B(x2,y2,z2)AB=(x2-x1,y2-y1,z2-
2024-11-10 08:31
【摘要】浙江省玉環(huán)縣楚門中學(xué)呂聯(lián)華㈠向量的定義:在空間,我們把具有大小和方向的量叫做向量。a···ABCDB1A1C1D1這個(gè)”平移“就是一個(gè)向量a=―自西向東平移4個(gè)單位”b記作:向量a、b。兩個(gè)向量不能比較大小,因?yàn)闆Q定向量的兩個(gè)因素是大小
2024-11-10 00:47
【摘要】1思考1數(shù)量積的性質(zhì)思考2數(shù)量積的運(yùn)算律引入數(shù)量積運(yùn)算定義課堂練習(xí)空間向量的數(shù)量積運(yùn)算2022-11-052空間向量的數(shù)量積運(yùn)算(一)SF?W=|F||s|cos?根據(jù)功的計(jì)算,我們定義了平面兩向量的數(shù)量積運(yùn)算.一旦定義出來,我們發(fā)現(xiàn)這種運(yùn)算非常有用,它能解
2025-07-18 12:59
【摘要】復(fù)數(shù)與平面向量的聯(lián)系請(qǐng)同學(xué)們考慮:1、有關(guān)復(fù)數(shù)的知識(shí),我們學(xué)了什么?2、有關(guān)向量的知識(shí),你還記得什么?(1)既有大小又有方向的量叫向量。向量可用有向線段來表示。(2)向量的模:向量的大小叫做向量的模。(3)相等的向量:模相等且方向相同的向量。(4)零向量:模
2024-11-09 09:20
【摘要】向量數(shù)量積的坐標(biāo)運(yùn)算與度量公式說課流程教材分析教法分析教學(xué)過程學(xué)法分析評(píng)價(jià)反思地位和作用重點(diǎn)難點(diǎn)教學(xué)目標(biāo)教材的地位和作用本節(jié)課選自人教版B版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)④第二章第三單元第三節(jié),計(jì)1課時(shí).本節(jié)課是在學(xué)生學(xué)習(xí)了向量的線性運(yùn)算、坐標(biāo)運(yùn)算和向量數(shù)量積的
2025-07-23 05:52
【摘要】2020年12月19日星期六用空間向量解決立體幾何問題的步驟:(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點(diǎn)、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運(yùn)算,研究點(diǎn)、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運(yùn)算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量問題)(進(jìn)行向量運(yùn)
2024-11-12 01:34
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對(duì)于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=
【摘要】向量共線的條件和軸上向量的坐標(biāo)運(yùn)算一般地,實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘運(yùn)算,記作λa,它的長(zhǎng)度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當(dāng)λ0時(shí),λa的方向與a方向相同;當(dāng)λ0時(shí),λa的方向與a方向相反;特別地,當(dāng)
2024-11-10 00:49